1.Research progress on the application of end-tidal carbon dioxide monitoring in prehospital emergency care.
Jingtao MA ; Renbao LI ; Qin LI ; Wei HAN
Chinese Critical Care Medicine 2024;36(12):1340-1344
Prehospital emergency care is the primary stage in the treatment of critically ill patients, where efficient and accurate monitoring methods are crucial for patient survival and prognosis. End-tidal carbon dioxide (EtCO2) monitoring is a real-time, non-invasive method that can sensitively capture the status of respiratory, circulatory, and metabolic functions, particularly in the urgent and complex pre-hospital environment, a immediate detection and non-invasive method, can sensitively capture the respiratory, circulatory, and metabolic status of patients. It provides valuable guidance for rapid decision-making and precise interventions. This is particularly valuable in the complex and urgent prehospital environment, providing critical data for rapid decision-making and precise intervention. This paper systematically reviews the advancements in the application of EtCO2 monitoring across various fields, including sepsis identification, trauma assessment, cardiac arrest, respiratory critical care, endotracheal intubation confirmation, and management of metabolic diseases, aiming to explore its application value and prospects in pre-hospital emergency care.
Humans
;
Emergency Medical Services/methods*
;
Carbon Dioxide/analysis*
;
Monitoring, Physiologic/methods*
;
Critical Illness
;
Capnography/methods*
2.The effect of dental scaling noise during intravenous sedation on acoustic respiration rate (RRa™)
Jung Ho KIM ; Seong In CHI ; Hyun Jeong KIM ; Kwang Suk SEO
Journal of Dental Anesthesia and Pain Medicine 2018;18(2):97-103
BACKGROUND: Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate (RRa™), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. METHODS: We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. RESULTS: Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were −0.03, −0.27, and −0.61 in each respective period (P < 0.001); limits of agreement were −4.84–4.45, −4.89–4.15, and −6.18–4.95 (P < 0.001). CONCLUSIONS: The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.
Acoustics
;
Auscultation
;
Bias (Epidemiology)
;
Capnography
;
Dental Scaling
;
Methods
;
Noise
;
Respiration
;
Respiratory Rate
;
Ultrasonics
;
Volunteers

Result Analysis
Print
Save
E-mail