1.Pharmacokinetics and anti-inflammatory activity of cannabidiol/ γ-polyglutamic acid-g-cholesterol nanomicelles.
Rui LI ; Li-Yan LU ; Chu XU ; Rui HAO ; Xiao YU ; Rui GUO ; Jue CHEN ; Wen-Hui RUAN ; Ying-Li WANG
China Journal of Chinese Materia Medica 2025;50(2):534-541
In this study, the pharmacokinetic characteristics and tissue distribution of cannabidiol(CBD)/γ-polyglutamic acid-g-cholesterol(γ-PGA-g-CHOL) nanomicelles [CBD/(γ-PGA-g-CHOL)NMs] were investigated by pharmacokinetic experiments, and the effect of CBD/(γ-PGA-g-CHOL)NMs on the lipopolysaccharide(LPS)-induced inflammatory damage of cells was evaluated by cell experiments. CBD/(γ-PGA-g-CHOL)NMs were prepared by dialysis. The CBD concentrations in the plasma samples of male SD rats treated with CBD and CBD/(γ-PGA-g-CHOL)NMs were investigated, and the pharmacokinetic parameters were calculated and compared. UPLC-MS/MS was employed to determine the concentration of CBD in tissue samples. The heart, liver, spleen, lung, kidney, and muscle samples were collected at different time points to explore the tissue distribution of CBD and CBD/(γ-PGA-g-CHOL)NMs. The Caco-2 cell model of LPS-induced inflammation was established, and the cell viability, transepithelial electrical resistance(TEER), and secretion levels of inflammatory cytokines were determined to compare the anti-inflammatory activity between the two groups. The results showed that CBD/(γ-PGA-g-CHOL)NMs had the average particle size of(163.1±2.3)nm, drug loading of 8.78%±0.28%, and encapsulation rate of 84.46%±0.35%. Compared with CBD, CBD/(γ-PGA-g-CHOL)NMs showed increased peak concentration(C_(max)) and prolonged peak time(t_(max)) and mean residence time(MRT_(0-t)). Within 24 h, the tissue distribution concentration of CBD/(γ-PGA-g-CHOL)NMs was higher than that of CBD. In addition, both CBD and CBD/(γ-PGA-g-CHOL)NMs significantly enhanced Caco-2 cell viability and TEER, lowered the secretion levels of inflammatory cytokines, and alleviated inflammation. Moreover, CBD/(γ-PGA-g-CHOL)NMs demonstrated stronger anti-inflammatory effect. It can be inferred that γ-PGA-g-CHOL blank nanomicelles are good carriers of CBD, being capable of prolonging the circulation time of CBD in the blood, improving the bioavailability and tissue distribution concentration of CBD, and protecting against LPS-induced inflammatory injury. The findings can provide an experimental basis for the development and clinical application of oral CBD preparations.
Animals
;
Cannabidiol/administration & dosage*
;
Polyglutamic Acid/analogs & derivatives*
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Anti-Inflammatory Agents/administration & dosage*
;
Micelles
;
Caco-2 Cells
;
Cholesterol/pharmacokinetics*
;
Tissue Distribution
;
Nanoparticles/chemistry*
2.Cannabidiol regulates circadian rhythm to improve sleep disorders following general anesthesia in rats.
Xinshun WU ; Jingcao LI ; Ying LIU ; Renhong QIU ; Henglin WANG ; Rui XYE ; Yang ZHANG ; Shuo LI ; Qiongyin FAN ; Huajin DONG ; Youzhi ZHANG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):744-750
OBJECTIVES:
To assess the regulatory effect of cannabidiol (CBD) on circadian rhythm sleep disorders following general anesthesia and explore its potential mechanism in a rat model of propofol-induced rhythm sleep disorder.
METHODS:
An electrode was embedded in the skull for cortical EEG recording in 24 male SD rats, which were randomized into control, propofol, CBD treatment, and diazepam treatment groups (n=6). Eight days later, a single dose of propofol (10 mg/kg) was injected via the tail vein with anesthesia maintenance for 3 h in the latter 3 groups, and daily treatment with saline, CBD or diazepam was administered via gavage; the control rats received only saline injection. A wireless system was used for collecting EEG, EMG, and body temperature data within 72 h after propofol injection. After data collection, blood samples and hypothalamic tissue samples were collected for determining serum levels of oxidative stress markers and hypothalamic expressions of the key clock proteins.
RESULTS:
Compared with the control rats, the rats with CBD treatment showed significantly increased sleep time at night (20:00-6:00), especially during the time period of 4:00-6:00 am. Compared with the rats in propofol group, which had prolonged SWS time and increased sleep episodes during 18:00-24:00 and sleep-wake transitions, the CBD-treated rats exhibited a significant reduction of SWS time and fewer SWS-to-active-awake transitions with increased SWS aspects and sleep-wake transitions at night (24:00-08:00). Diazepam treatment produced similar effect to CBD but with a weaker effect on sleep-wake transitions. Propofol caused significant changes in protein expressions and redox state, which were effectively reversed by CBD treatment.
CONCLUSIONS
CBD can improve sleep structure and circadian rhythm in rats with propofol-induced sleep disorder possibly by regulating hypothalamic expressions of the key circadian clock proteins, suggesting a new treatment option for perioperative sleep disorders.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Cannabidiol/therapeutic use*
;
Rats
;
Circadian Rhythm/drug effects*
;
Propofol/adverse effects*
;
Anesthesia, General/adverse effects*
;
Sleep Wake Disorders/chemically induced*
;
Hypothalamus/metabolism*
;
Electroencephalography
3.Cannabidiol inhibits neuronal endoplasmic reticulum stress and apoptosis in rats with multiple concussions by regulating the PERK-eIF2α-ATF4-CHOP pathway.
Yujia YANG ; Lifang YANG ; Yaling WU ; Zhaoda DUAN ; Chunze YU ; Chunyun WU ; Jianyun YU ; Li YANG
Journal of Southern Medical University 2025;45(6):1240-1250
OBJECTIVES:
To explore the effects of cannabidiol on endoplasmic reticulum stress and neuronal apoptosis in rats with multiple concussions (MCC).
METHODS:
SD rats were randomized into sham group, MCC group, 1% tween20 (TW) treatment group, and low-dose (10 mg/kg) and high-dose (40 mg/kg) cannabidiol treatment groups. In all but the sham group, MCC models were established using a metal pendulum percussion device, after which the rats received daily intraperitoneal injections of the corresponding agents for 2 weeks. The expressions of PERK, eIF2α, ATF4, CHOP, TRIB3, p-Akt and pro-caspase-3 in the brain tissue of the rats were detected with qRT-PCR, Western blotting and immunofluorescence staining. The core targets of cannabidiol in treatment of traumatic brain injury (TBI) were identified by network pharmacology analysis, and molecular docking was carried out to simulate the interaction of cannabidiol with the factors related to endoplasmic reticulum stress and apoptosis.
RESULTS:
Compared with the sham-operated rats, the rat models of MCC showed significantly increased mRNA expressions of PERK, eIF2α and CHOP and protein expressions of PERK, eIF2α, ATF4, CHOP, TRIB3, p-AKT and pro-caspase-3 in the cerebral cortex. CBD treatment, especially at the high dose, obviously increased the expression of p-Akt and lowered the expression levels of the other factors tested in the rat models. Network pharmacology analysis indicated interactions of the core targets of CBD with the factors related to endoplasmic reticulum stress and TBI, and molecular docking study showed a high binding energy of CBD with multiple factors pertaining to endoplasmic reticulum stress and apoptosis.
CONCLUSIONS
MCC induce endoplasmic reticulum stress and apoptosis in rat brain tissues, for which CBD, especially at a high dose, provides neuroprotective effects by inhibiting endoplasmic reticulum stress and cell apoptosis.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Apoptosis/drug effects*
;
Rats, Sprague-Dawley
;
Activating Transcription Factor 4/metabolism*
;
Transcription Factor CHOP/metabolism*
;
Rats
;
Eukaryotic Initiation Factor-2/metabolism*
;
Signal Transduction/drug effects*
;
eIF-2 Kinase/metabolism*
;
Cannabidiol/pharmacology*
;
Neurons/metabolism*
;
Brain Concussion/metabolism*
;
Male
;
Molecular Docking Simulation
4.Research progress on anti-inflammatory effects of plant-derived cannabinoid type 2 receptor modulators.
Chen-Xia LIAN ; Si-Jing HU ; Qiao-Yan ZHANG ; Qi-Ming ZHAO ; Lu-Ping QIN ; Wan GONG
China Journal of Chinese Materia Medica 2023;48(23):6294-6306
Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.
Cannabinoid Receptor Modulators/pharmacology*
;
Cannabinoid Receptor Agonists/pharmacology*
;
Receptors, Cannabinoid
;
Cannabinoids/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
5.Induction of Anxiety-Like Phenotypes by Knockdown of Cannabinoid Type-1 Receptors in the Amygdala of Marmosets.
Lin ZHU ; Di ZHENG ; Rui LI ; Chen-Jie SHEN ; Ruolan CAI ; Chenfei LYU ; Binliang TANG ; Hao SUN ; Xiaohui WANG ; Yu DING ; Bin XU ; Guoqiang JIA ; Xinjian LI ; Lixia GAO ; Xiao-Ming LI
Neuroscience Bulletin 2023;39(11):1669-1682
The amygdala is an important hub for regulating emotions and is involved in the pathophysiology of many mental diseases, such as depression and anxiety. Meanwhile, the endocannabinoid system plays a crucial role in regulating emotions and mainly functions through the cannabinoid type-1 receptor (CB1R), which is strongly expressed in the amygdala of non-human primates (NHPs). However, it remains largely unknown how the CB1Rs in the amygdala of NHPs regulate mental diseases. Here, we investigated the role of CB1R by knocking down the cannabinoid receptor 1 (CNR1) gene encoding CB1R in the amygdala of adult marmosets through regional delivery of AAV-SaCas9-gRNA. We found that CB1R knockdown in the amygdala induced anxiety-like behaviors, including disrupted night sleep, agitated psychomotor activity in new environments, and reduced social desire. Moreover, marmosets with CB1R-knockdown had up-regulated plasma cortisol levels. These results indicate that the knockdown of CB1Rs in the amygdala induces anxiety-like behaviors in marmosets, and this may be the mechanism underlying the regulation of anxiety by CB1Rs in the amygdala of NHPs.
Animals
;
Callithrix
;
Receptors, Cannabinoid
;
Anxiety
;
Amygdala
;
Cannabinoids
;
Phenotype
6.Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation.
Ashraf DUZAN ; Desiree REINKEN ; Timothy L MCGOMERY ; Nicholas M FERENCZ ; Jacob M PLUMMER ; Mufeed M BASTI
Journal of Integrative Medicine 2023;21(2):120-129
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; 21(2): 120-128.
Humans
;
Glioblastoma/pathology*
;
Endocannabinoids/therapeutic use*
;
Brain Neoplasms/pathology*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cannabinoids/therapeutic use*
7.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/pathology*
;
Cannabinoid Receptor Agonists/metabolism*
;
Collagen Type I/pharmacology*
;
Collagen Type III/pharmacology*
;
Hydroxyproline/pharmacology*
;
Sodium Chloride/metabolism*
;
Mice, Inbred C57BL
;
Lung/pathology*
;
Cannabinoids/adverse effects*
;
Bleomycin/metabolism*
;
Collagen/metabolism*
;
Inflammation/pathology*
;
RNA, Messenger/metabolism*
8.Role of Cannabinoid CB1 Receptor in Object Recognition Memory Impairment in Chronically Rapid Eye Movement Sleep-deprived Rats.
Kaveh SHAHVEISI ; Seyedeh MARZIYEH HADI ; Hamed GHAZVINI ; Mehdi KHODAMORADI
Chinese Medical Sciences Journal 2023;38(1):29-37
Objective We aimed to investigate whether antagonism of the cannabinoid CB1 receptor (CB1R) could affect novel object recognition (NOR) memory in chronically rapid eye movement sleep-deprived (RSD) rats.Methods The animals were examined for recognition memory following a 7-day chronic partial RSD paradigm using the multiple platform technique. The CB1R antagonist rimonabant (1 or 3 mg/kg, i.p.) was administered either at one hour prior to the sample phase for acquisition, or immediately after the sample phase for consolidation, or at one hour before the test phase for retrieval of NOR memory. For the reconsolidation task, rimonabant was administered immediately after the second sample phase.Results The RSD episode impaired acquisition, consolidation, and retrieval, but it did not affect the reconsolidation of NOR memory. Rimonabant administration did not affect acquisition, consolidation, and reconsolidation; however, it attenuated impairment of the retrieval of NOR memory induced by chronic RSD.Conclusions These findings, along with our previous report, would seem to suggest that RSD may affect different phases of recognition memory based on its duration. Importantly, it seems that the CB1R may, at least in part, be involved in the adverse effects of chronic RSD on the retrieval, but not in the acquisition, consolidation, and reconsolidation, of NOR memory.
Rats
;
Animals
;
Rimonabant/pharmacology*
;
Memory
;
Sleep, REM
;
Receptors, Cannabinoid
;
Cannabinoids/pharmacology*
9.Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications.
Srushti M TAMBE ; Suraj MALI ; Purnima D AMIN ; Mozaniel OLIVEIRA
Journal of Integrative Medicine 2023;21(3):236-244
Cannabidiol (CBD), a nonpsychotropic phytocannabinoid that was once largely disregarded, is currently the subject of significant medicinal study. CBD is found in Cannabis sativa, and has a myriad of neuropharmacological impacts on the central nervous system, including the capacity to reduce neuroinflammation, protein misfolding and oxidative stress. On the other hand, it is well established that CBD generates its biological effects without exerting a large amount of intrinsic activity upon cannabinoid receptors. Because of this, CBD does not produce undesirable psychotropic effects that are typical of marijuana derivatives. Nonetheless, CBD displays the exceptional potential to become a supplementary medicine in various neurological diseases. Currently, many clinical trials are being conducted to investigate this possibility. This review focuses on the therapeutic effects of CBD in managing neurological disorders like Alzheimer's disease, Parkinson's disease and epilepsy. Overall, this review aims to build a stronger understanding of CBD and provide guidance for future fundamental scientific and clinical investigations, opening a new therapeutic window for neuroprotection. Please cite this article as: Tambe SM, Mali S, Amin PD, Oliveira M. Neuroprotective potential of Cannabidiol: Molecular mechanisms and clinical implications. J Integr Med. 2023; 21(3): 236-244.
Humans
;
Cannabidiol/therapeutic use*
;
Neuroprotection
;
Cannabinoids/therapeutic use*
;
Epilepsy/drug therapy*
;
Cannabis
;
Neuroprotective Agents/therapeutic use*
10.Qualitative and Quantitative Analysis of Five Indoles or Indazole Amide Synthetic Cannabinoids in Suspected E-Cigarette Oil by GC-MS.
Cui-Mei LIU ; Wei JIA ; Chun-Hui SONG ; Zhen-Hua QIAN ; Zhen-Dong HUA ; Yue-Meng CHEN
Journal of Forensic Medicine 2023;39(5):457-464
OBJECTIVES:
To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.
METHODS:
The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.
RESULTS:
The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.
CONCLUSIONS
The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.
Gas Chromatography-Mass Spectrometry/methods*
;
Electronic Nicotine Delivery Systems
;
Illicit Drugs/analysis*
;
Indazoles/chemistry*
;
Glycerol/analysis*
;
Cannabinoids
;
Indoles/chemistry*
;
Ions

Result Analysis
Print
Save
E-mail