1.Identification of the target site of antimicrobial peptide AMP-17 against Candida albicans.
Longbing YANG ; Zhuqing TIAN ; Luoxiong ZHOU ; Chaoqin SUN ; Mingjiao HUANG ; Chunren TIAN ; Jian PENG ; Guo GUO
Chinese Journal of Biotechnology 2023;39(1):304-317
Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.
Humans
;
Candida albicans
;
Antimicrobial Peptides
;
Proteomics
;
Peptides/pharmacology*
;
Transcription Factors/metabolism*
;
Antifungal Agents/pharmacology*
2.Butyl alcohol extract of Baitouweng Decoction alleviates vulvovaginal candidiasis in mice by downregulating NLRP3 inflammasome and related signal pathways.
Kang ZHANG ; Ting ZHAO ; Dan XIA ; Meng-Xiang ZHANG ; Da-Qiang WU ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2022;47(9):2516-2524
This study aims to explore the effect of butyl alcohol extract of Baitouweng Decoction(BAEB) on vulvovaginal candidiasis(VVC) in mice and to clarify the mechanism from Toll-like receptors(TLRs)/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome. To be specific, female KM mice were randomized into control group(i.g., normal saline), model group, fluco-nazole group(i.g., 20 mg·kg~(-1)), and low-dose, medium-dose, and high-dose BAEB groups(i.g., 20, 40, and 80 mg·kg~(-1), respectively). VVC was induced in mice except the control group. After the modeling, administration began and lasted 7 days. The ge-neral conditions and body weight of mice were recorded every day. On the 1 st, 3 rd, 7 th, and 14 th after vaginal infection by Candida albicans, the fungal load in the vaginal lavage fluid of the mice was measured with the plate method, and the morphology of C. albicans in vaginal lavage fluid was observed based on Gram staining. After the mice were killed, vaginal tissues were subjected to hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining for vaginal histopathological analysis. The content of cytokines in vaginal lavage fluid, such as interleukin(IL)-1β, IL-18, tumor necrosis factor-α(TNF-α), IL-6, and S100 a8, was determined by enzyme-linked immunosorbent assay(ELISA), and content of reactive oxygen species(ROS) in vaginal tissues by tissue ROS detection kit. The protein expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and nuclear factor-κB(NF-κB) in vaginal tissues was detected by Western blot, and the levels and distribution of NLRP3, Dectin-1, Syk, MyD88, TLR2, and TLR4 in vaginal tissues were determined with the immunohistochemical method. The results show that BAEB can improve the general conditions of VVC mice, reduce the fungal load and C. albicans hyphae in vaginal secretion, decrease ROS content in vaginal tissues and content of cytokines in vaginal lavage fluid, and down-regulate the expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and NF-κB in vaginal tissues. The above results indicate that BAEB exerts therapeutic effect on VVC mice by down-regulating the key proteins in the TLRs/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome.
1-Butanol/therapeutic use*
;
Animals
;
Candida albicans
;
Candidiasis, Vulvovaginal/drug therapy*
;
Caspase 1/metabolism*
;
Cytokines/metabolism*
;
Female
;
Humans
;
Inflammasomes/metabolism*
;
Mice
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Plant Extracts/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
3.Two natural molecules preferentially inhibit azole-resistant Candida albicans with MDR1 hyperactivation.
Hong-Zhuo SHI ; Wen-Qiang CHANG ; Ming ZHANG ; Hong-Xiang LOU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):209-217
Antifungal drug resistance is a significant clinical problem, and antifungal agents that can evade resistance are urgently needed. In infective niches, resistant organisms often co-existed with sensitive ones, or a subpopulation of antibiotic-susceptible organisms may evolve into resistant ones during antibiotic treatment and eventually dominate the whole population. In this study, we established a co-culture assay in which an azole-resistant Candida albicans strain was mixed with a susceptible strain labeled with green fluorescent protein to mimic in vivo conditions and screen for antifungal drugs. Fluconazole was used as a positive control to verify the validity of this co-culture assay. Five natural molecules exhibited antifungal activity against both susceptible and resistant C. albicans. Two of these compounds, retigeric acid B (RAB) and riccardin D (RD), preferentially inhibited C. albicans strains in which the efflux pump MDR1 was activated. This selectivity was attributed to greater intracellular accumulation of the drugs in the resistant strains. Changes in sterol and lipid compositions were observed in the resistant strains compared to the susceptible strain, and might increase cell permeability to RAB and RD. In addition, RAB and RD interfered with the sterol pathway, further aggregating the decrease in ergosterol in the sterol synthesis pathway in the MDR1-activated strains. Our findings here provide an alternative for combating resistant pathogenic fungi.
ATP-Binding Cassette Transporters
;
genetics
;
metabolism
;
Antifungal Agents
;
chemistry
;
metabolism
;
pharmacology
;
Azoles
;
pharmacology
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Candida albicans
;
chemistry
;
drug effects
;
metabolism
;
Cell Membrane
;
chemistry
;
metabolism
;
Coculture Techniques
;
Drug Resistance, Fungal
;
drug effects
;
Ergosterol
;
metabolism
;
Fungal Proteins
;
genetics
;
metabolism
;
Lipids
;
chemistry
;
Molecular Structure
;
Permeability
;
Phenyl Ethers
;
chemistry
;
metabolism
;
pharmacology
;
Sterols
;
chemistry
;
metabolism
;
Stilbenes
;
chemistry
;
metabolism
;
pharmacology
;
Triterpenes
;
chemistry
;
metabolism
;
pharmacology
4.Cis-2-dodecenoic Acid Mediates Its Synergistic Effect with Triazoles by Interfering with Efflux Pumps in Fluconazole-resistant Candida albicans.
Dong Liang YANG ; Yan Ling HU ; Zi Xin YIN ; Gui Sheng ZENG ; Dan LI ; Yu Qian ZHANG ; Zhen Hua XU ; Xiao Ming GUAN ; Li Xing WENG ; Lian Hui WANG
Biomedical and Environmental Sciences 2019;32(3):199-209
OBJECTIVE:
To evaluate the synergy of the Burkholderia signaling molecule cis-2-dodecenoic acid (BDSF) and fluconazole (FLU) or itraconazole (ITRA) against two azole-resistant C. albicans clinical isolates in vitro and in vivo.
METHODS:
Minimum inhibitory concentrations (MICs) of antibiotics against two azole-resistant C. albicans were measured by the checkerboard technique, E-test, and time-kill assay. In vivo antifungal synergy testing was performed on mice. Analysis of the relative gene expression levels of the strains was conducted by quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
RESULTS:
BDSF showed highly synergistic effects in combination with FLU or ITRA with a fractional inhibitory concentration index of ⪕ 0.08. BDSF was not cytotoxic to normal human foreskin fibroblast cells at concentrations of up to 300 μg/mL. The qRT-PCR results showed that the combination of BDSF and FLU/ITRA significantly inhibits the expression of the efflux pump genes CDR1 and MDR1 via suppression of the transcription factors TAC1 and MRR1, respectively, when compared with FLU or ITRA alone. No dramatic difference in the mRNA expression levels of ERG1, ERG11, and UPC2 was found, which indicates that the drug combinations do not significantly interfere with UPC2-mediated ergosterol levels. In vivo experiments revealed that combination therapy can be an effective therapeutic approach to treat candidiasis.
CONCLUSION
The synergistic effects of BDSF and azoles may be useful as an alternative approach to control azole-resistant Candida infections.
Antifungal Agents
;
pharmacology
;
Burkholderia cenocepacia
;
chemistry
;
Candida albicans
;
drug effects
;
physiology
;
Candidiasis
;
drug therapy
;
Drug Resistance, Fungal
;
Fatty Acids, Monounsaturated
;
adverse effects
;
Fluconazole
;
pharmacology
;
Humans
;
Microbial Sensitivity Tests
;
Triazoles
;
metabolism
5.Protective Effects of cis-2-Dodecenoic Acid in an Experimental Mouse Model of Vaginal Candidiasis.
Dong Liang YANG ; Yu Qian ZHANG ; Yan Ling HU ; Li Xing WENG ; Gui Sheng ZENG ; Lian Hui WANG
Biomedical and Environmental Sciences 2018;31(11):816-828
OBJECTIVE:
To evaluate the efficacy of cis-2-dodecenoic acid (BDSF) in the treatment and prevention of vaginal candidiasis in vivo.
METHODS:
The activities of different concentrations of BDSF against the virulence factors of Candida albicans (C. albicans) were determined in vitro. An experimental mouse model of Candida vaginitis was treated with 250 μmol/L BDSF. Treatment efficiency was evaluated in accordance with vaginal fungal burden and inflammation symptoms.
RESULTS:
In vitro experiments indicated that BDSF attenuated the adhesion and damage of C. albicans to epithelial cells by decreasing phospholipase secretion and blocking filament formation. Treatment with 30 μmol/L BDSF reduced the adhesion and damage of C. albicans to epithelial cells by 36.9% and 42.3%, respectively. Treatment with 200 μmol/L BDSF completely inhibited phospholipase activity. In vivo mouse experiments demonstrated that BDSF could effectively eliminate vaginal infection and relieve inflammatory symptoms. Four days of treatment with 250 μmol/L BDSF reduced vaginal fungal loads by 6-fold and depressed inflammation. Moreover, BDSF treatment decreased the expression levels of the inflammatory chemokine-associated genes MCP-1 and IGFBP3 by 2.5- and 2-fold, respectively.
CONCLUSION
BDSF is a novel alternative drug that can efficiently control vaginal candidiasis by inhibiting the virulence factors of C. albicans.
Animals
;
Candida albicans
;
drug effects
;
metabolism
;
pathogenicity
;
physiology
;
Candidiasis, Vulvovaginal
;
drug therapy
;
genetics
;
immunology
;
microbiology
;
Chemokine CCL2
;
genetics
;
immunology
;
Disease Models, Animal
;
Fatty Acids, Monounsaturated
;
administration & dosage
;
Female
;
Fungal Proteins
;
genetics
;
metabolism
;
Humans
;
Insulin-Like Growth Factor Binding Protein 3
;
genetics
;
immunology
;
Mice
;
Virulence
;
drug effects
;
Virulence Factors
;
genetics
;
metabolism
6.Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants.
The Su MOE ; Htet Htet WIN ; Thin Thin HLAING ; War War LWIN ; Zaw Min HTET ; Khin Mar MYA
Journal of Integrative Medicine 2018;16(5):358-366
OBJECTIVEMyanmar has a long history of using medicinal plants for treatment of various diseases. To the best of our knowledge there are no previous reports on antiglycation activities of medicinal plants from Myanmar. Therefore, this study was aimed to evaluate the antioxidant, antiglycation and antimicrobial properties of 20 ethanolic extracts from 17 medicinal plants indigenous to Myanmar.
METHODSIn vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide (SO) radicals were used to determine the antioxidant activities. Folin-Ciocalteu's method was performed to determine the total phenolic content. Antiglycation and antimicrobial activities were detected by bovine serum albumin-fluorescent assay and agar well diffusion method.
RESULTSTerminalia chebula Retz. (Fruit), containing the highest total phenolic content, showed high antioxidant activities with inhibition of 77.98% ± 0.92%, 88.95% ± 2.42%, 88.56% ± 1.87% and 70.74%± 2.57% for DPPH, NO, SO assays and antiglycation activity respectively. It also showed the antimicrobial activities against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans with inhibition zone of 19, 18, 17, 25 and 15 mm, respectively. Garcinia mangostana Linn. showed the strongest activities for SO and antiglycation assays with inhibition of 93.68% ± 2.63% and 82.37% ± 1.78%. Bark of Melia sp. was the best NO radical scavenger with inhibition rate of 89.39%± 0.60%.
CONCLUSIONThe results suggest that these plants are potential sources of antioxidants with free radical-scavenging and antiglycation activities and could be useful for decreasing the oxidative stress and glycation end-product formation in glycation-related diseases.
Anti-Bacterial Agents ; analysis ; pharmacology ; Anti-Infective Agents ; analysis ; pharmacology ; Antioxidants ; analysis ; pharmacology ; Bacteria ; drug effects ; growth & development ; Biphenyl Compounds ; metabolism ; Candida albicans ; drug effects ; growth & development ; Fruit ; Garcinia ; chemistry ; Glycation End Products, Advanced ; metabolism ; Humans ; Magnoliopsida ; chemistry ; Medicine, Traditional ; Melia ; chemistry ; Myanmar ; Nitric Oxide ; metabolism ; Oxidative Stress ; drug effects ; Phenols ; analysis ; pharmacology ; Phytotherapy ; Picrates ; metabolism ; Plant Bark ; Plant Extracts ; chemistry ; pharmacology ; Plants, Medicinal ; Superoxides ; Terminalia ; chemistry
7. Modulates Vaginal Epithelial Cell Innate Response to.
Xiao-Xi NIU ; Ting LI ; Xu ZHANG ; Su-Xia WANG ; Zhao-Hui LIU
Chinese Medical Journal 2017;130(3):273-279
BACKGROUNDVulvovaginal candidiasis is caused by Candida albicans. The vaginal epithelium, as the first site of the initial stage of infection by pathogens, plays an important role in resisting genital tract infections. Moreover, lactobacilli are predominant members of the vaginal microbiota that help to maintain a normal vaginal microenvironment. Therefore, Lactobacillus crispatus was explored for its capacity to intervene in the immune response of vaginal epithelial cells VK2/E6E7 to C. albicans.
METHODSWe examined the interleukin-2 (IL-2), 4, 6, 8, and 17 produced by VK2/E6E7 cells infected with C. albicans and treated with L. crispatus in vitro. The capacity of L. crispatus to adhere to VK2/E6E7 and inhibit C. albicans growth was also tested by scanning electron microscopy (SEM) and adhesion experiments.
RESULTSCompared with group VK2/E6E7 with C. albicans, when treated with L. crispatus, the adhesion of C. albicans to VK2/E6E7 cells decreased significantly by 52.87 ± 1.22%, 47.03 ± 1.35%, and 42.20 ± 1.55% under competition, exclusion, and displacement conditions, respectively. SEM revealed that the invasion of C. albicans into VK2/E6E7 cells was caused by induced endocytosis and active penetration. L. crispatus could effectively protect the cells from the virulence of hyphae and spores of C. albicans and enhance the local immune function of the VK2/E6E7 cells. The concentrations of IL-2, 6, and 17 were upregulated significantly (P < 0.01) and that of IL-8 were downregulated significantly (P < 0.01) in infected VK2/E6E7 cells treated with L. crispatus. The concentration of IL-4 was similar to that of the group VK2/E6E7 with C. albicans (24.10 ± 0.97 vs. 23.12 ± 0.76 pg/ml, P = 0.221).
CONCLUSIONSL. crispatus can attenuate the virulence of C. albicans, modulate the secretion of cytokines and chemokines, and enhance the immune response of VK2/E6E7 cells in vitro. The vaginal mucosa has a potential function in the local immune responses against pathogens that can be promoted by L. crispatus.
Candida albicans ; pathogenicity ; Cell Line, Tumor ; Epithelial Cells ; immunology ; metabolism ; microbiology ; ultrastructure ; Female ; Humans ; Interleukin-17 ; metabolism ; Interleukin-2 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Lactobacillus crispatus ; physiology ; Microscopy, Electron, Scanning ; Vagina ; cytology
8.Effect of Candida albicans on Intestinal Ischemia-reperfusion Injury in Rats.
Lei YAN ; Chun-Rong WU ; Chen WANG ; Chun-Hui YANG ; Guang-Zhi TONG ; Jian-Guo TANG
Chinese Medical Journal 2016;129(14):1711-1718
BACKGROUNDInflammation is supposed to play a key role in the pathophysiological processes of intestinal ischemia-reperfusion injury (IIRI), and Candida albicans in human gut commonly elevates inflammatory cytokines in intestinal mucosa. This study aimed to explore the effect of C. albicans on IIRI.
METHODSFifty female Wistar rats were divided into five groups according to the status of C. albicans infection and IIRI operation: group blank and sham; group blank and IIRI; group cefoperazone plus IIRI; group C. albicans plus cefoperazone and IIRI (CCI); and group C. albicans plus cefoperazone and sham. The levels of inflammatory factors tumor necrosis factor (TNF)-μ, interleukin (IL)-6, IL-1β, and diamine oxidase (DAO) measured by enzyme-linked immunosorbent assay were used to evaluate the inflammation reactivity as well as the integrity of small intestine. Histological scores were used to assess the mucosal damage, and the C. albicans blood translocation was detected to judge the permeability of intestinal mucosal barrier.
RESULTSThe levels of inflammatory factors TNF-μ, IL-6, and IL-1β in serum and intestine were higher in rats undergone both C. albicans infection and IIRI operation compared with rats in other groups. The levels of DAO (serum: 44.13 ± 4.30 pg/ml, intestine: 346.21 ± 37.03 pg/g) and Chiu scores (3.41 ± 1.09) which reflected intestinal mucosal disruption were highest in group CCI after the operation. The number of C. albicans translocated into blood was most in group CCI ([33.80 ± 6.60] ×102 colony forming unit (CFU)/ml).
CONCLUSIONIntestinal C. albicans infection worsened the IIRI-induced disruption of intestinal mucosal barrier and facilitated the subsequent C. albicans translocation and dissemination.
Amine Oxidase (Copper-Containing) ; metabolism ; Animals ; Anti-Bacterial Agents ; pharmacology ; Candida albicans ; drug effects ; pathogenicity ; Cefoperazone ; pharmacology ; Enzyme-Linked Immunosorbent Assay ; Female ; Interleukin-1beta ; metabolism ; Interleukin-6 ; metabolism ; Intestines ; drug effects ; immunology ; metabolism ; Rats ; Rats, Wistar ; Reperfusion Injury ; immunology ; metabolism ; microbiology
9.Effect of Huanglian Jiedu decoction in combination with fluconazole on ergosterol of fluconazole-resistant Candida albicans.
Yuan-yuan YAN ; Tian-ming WANG ; Gao-xiang SHI ; Meng-xiang ZHANG ; Ke-qiao LU ; Jing SHAO ; Chang-zhong WANG
China Journal of Chinese Materia Medica 2015;40(4):727-732
OBJECTIVETo investigate the effects of ethyl acetate extract of Huanglian Jiedu decoction (EAHD) , alone and in combination with fluconazole (FLZ) on FLZ-resistant Candida albicans.
METHODThe minimum inhibitory concentrations (MIC) and sessile MIC80 (SMIC80) of EAHD and FLZ to FLZ-resistant C. albicans were determined by CLSI M27-A3 microdilution method, and the synergy of EAHD combined with FLZ were examined by the checkerboard microdilution assay. Agar plate-method was adopted to observe the rate of antifungal activity according to time-kill curve. HPLC and qRT-PCR were utilized to evaluate the changes of ergosterol content and expressions of related genes, respectively.
RESULTMICs of EAHD ranged from 156 to 1,250 mg · L(-1), those of FLZ from 256 to above 2,048 mg · L(-1) with FICI approximate 0.066 in combination; SMIC80 of EAHD were higher than 1,250 mg · L(-1), SMIC80 of FLZ were higher than 512 mg · L(-1) and up to above 2,048 mg · L(-1). Combination group also showed synergy effect except one group showing addition effect. The results of T-K experiment also confirmed obviously fungicidal effect when treated for 12 h. When compared with control groups, the ergosterol was reduced 85% and 50% in the treatments of combination and EAHD alone by HPLC, respective- ly. The expressions of ERG1, ERG2, ERG6, ERG7 and ERG11 were upregulated, and ACS1, ACS2, MET6 were downregulated when exposed to FLZ. The expressions of the above genes were downregulated by treatment of EAHD. The expressions of ERG2, ERG6, ERG11 were upregulated, while ERG1, ERG7, ACS1, ACS2, MET6 were downregulated in combination group.
CONCLUSIONThe combination of EAHD and FLZ exhibited synergy against FLZ-resistant C. albicans through decreasing the synthesis of ergosterol, and resulting in the breakage of cell membrane.
Antifungal Agents ; pharmacology ; Candida albicans ; drug effects ; growth & development ; metabolism ; Drug Resistance, Fungal ; drug effects ; Drug Synergism ; Drugs, Chinese Herbal ; pharmacology ; Ergosterol ; biosynthesis ; Fluconazole ; pharmacology ; Microbial Sensitivity Tests
10.Effect of andrographolide on quorum sensing and relevant virulence genes of Candida albicans.
Yuan-yuan YAN ; Gao-xiang SHI ; Jing SHAO ; Ke-qiao LU ; Meng-xiang ZHANG ; Tian-ming WANG ; Bin WANG ; Chang-zhong WANG
China Journal of Chinese Materia Medica 2015;40(2):292-297
OBJECTIVETo investigate the effect of andrographolide (AG) on quroum sensing (QS) and relevant virulence genes of Candida albicans.
METHODGas-chromatography-mass spectrometry (GC-MS) was applied to detect the changes in the content of farnesol and tyrosol in C. albicans intervened by AG. The real-time quantitative PCR (qRT-PCR) was adopted to inspect the expressions of relevant virulence genes such as CHK1, PBS2 and HOG1 regulated by QS.
RESULTAt 2 h after the growth of C. albican, the farnesol and tyrosol secretions reduced, without notable change after intervention with AG. The secretions were highest at 12 h and decreased at 24 h. After the intervention with different concentrations of AG, the farnesol content reduces, whereas tyrosol increased, indicating a dose-dependence, particularly with 1 000 mg x L(-1) AG. qRT-PCR revealed that 1 000 mg x L(-1) AG could down-regulate CHK1 by 2.375, 3.330 and 4.043 times and PBS2 by 2.010, 4.210 and 4.760 times, with no significant change in HOG1.
CONCLUSIONAG could inhibit the farnesol secretion, promote the tyrosol secretion and down-regulate QS-related virulence genes CHK1 and PBS2 expressions.
Candida albicans ; drug effects ; genetics ; physiology ; Diterpenes ; pharmacology ; Farnesol ; analysis ; metabolism ; Gas Chromatography-Mass Spectrometry ; Genes, Fungal ; Phenylethyl Alcohol ; analogs & derivatives ; analysis ; metabolism ; Quorum Sensing ; drug effects ; Real-Time Polymerase Chain Reaction ; Virulence ; genetics

Result Analysis
Print
Save
E-mail