1.Research progress of ICI and CAR-T in tumor immunotherapy.
Meilin YUAN ; Deqiao SHENG ; Yi YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):178-182
Tumor immunotherapy has revolutionized the treatment prospects for various malignant tumors. Immune checkpoint inhibitors (ICIs) and chimeric antigen receptor T-cell therapy (CAR-T) , as representative of tumor immunotherapy, have achieved tremendous success in clinical practice and have become the first-line clinical treatment options for certain tumors. This article summarizes the progress and challenges of immune checkpoint inhibitors and CAR-T therapy in tumor treatment, and discusses the future direction of tumor therapeutic vaccines development. Identifying novel therapeutic targets within the realm of tumor immunology, engineering innovative drug delivery systems, and employing combinatorial therapeutic strategies are poised to enhance therapeutic efficacy and patient outcomes in oncology, thereby extending benefits to a broader patient population.
Humans
;
Neoplasms/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Receptors, Chimeric Antigen/genetics*
;
Immunotherapy/methods*
;
Immunotherapy, Adoptive/methods*
;
Animals
;
Cancer Vaccines/therapeutic use*
2.New characteristics of cancer immunotherapy: trends in viral tumor immunotherapy with influenza virus-based approaches.
Shiyao HU ; Yiqi CAI ; Yong SHEN ; Yingkuan SHAO ; Yushen DU ; Yiding CHEN
Journal of Zhejiang University. Science. B 2025;26(6):546-556
Immunomodulatory cancer therapy is witnessing the rise of viral immunotherapy. The oncolytic influenza A virus, although promising in preclinical investigations, remains to be implemented in clinical practice. Recent progress in genetic engineering, coupled with experiential insights, offers opportunities to enhance the therapeutic efficacy of the influenza A virus. This review explores the use of the influenza virus, its attenuated forms, and associated vaccines in cancer immunotherapy, highlighting their respective advantages and challenges. We further elucidate methods for engineering influenza viruses and innovative approaches to augment them with cytokines or immune checkpoint inhibitors, aiming to maximize their clinical impact. Our goal is to provide insights essential for refining influenza A virus-based viral tumor immunotherapies.
Humans
;
Neoplasms/immunology*
;
Immunotherapy/trends*
;
Influenza A virus/immunology*
;
Oncolytic Virotherapy/trends*
;
Animals
;
Cancer Vaccines/therapeutic use*
;
Oncolytic Viruses
;
Genetic Engineering
;
Immune Checkpoint Inhibitors/therapeutic use*
3.Development of therapeutic cancer vaccines based on cancer immunity cycle.
Jing ZHANG ; Yiyuan ZHENG ; Lili XU ; Jing GAO ; Ziqi OU ; Mingzhao ZHU ; Wenjun WANG
Frontiers of Medicine 2025;19(4):553-599
Therapeutic cancer vaccines have experienced a resurgence over the past ten years. Cancer vaccines are typically designed to enhance specific stages of the cancer-immunity cycle, primarily by activating the immune system to promote tumor regression and overcome immune resistance. In this review, we summarize the significant recent advancements in cancer immunotherapy based on the cancer-immunity cycle, including the effector cell function, infiltration, initiation, and exhaustion. We summarize the identification of tumor antigens and their delivery through cancer vaccines. We discuss how specific stages of the cancer-immunity cycle have been leveraged to augment anti-tumor immune responses and improve vaccine efficacy. Additionally, the impact of aging and myelosuppression, two prevalent forms of immunological stress, on the effectiveness of therapeutic cancer vaccines is deliberated. Finally, we summarize the current status of various therapeutic cancer vaccines at different clinical trial phases.
Humans
;
Cancer Vaccines/therapeutic use*
;
Neoplasms/therapy*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/immunology*
;
Animals
4.mRNA vaccines as cancer therapies.
Shaoxiong HUANG ; Haiying QUE ; Manni WANG ; Xiawei WEI
Chinese Medical Journal 2024;137(24):2979-2995
Cancer remains a major global health challenge, with conventional treatments like chemotherapy and radiotherapy often hindered by significant side effects, lack of specificity, and limited efficacy in advanced cases. Among emerging therapeutic strategies, mRNA vaccines have shown remarkable potential due to their adaptability, rapid production, and capability for personalized cancer treatment. This review provides an in-depth analysis of messenger RNA (mRNA) vaccines as a therapeutic approach for cancer immunotherapy, focusing on their molecular biology, classification, mechanisms, and clinical studies. Derived from reported literature and data on clinicaltrials.gov, it examines studies on mRNA vaccines encoding tumor-specific antigens (TSAs), tumor-associated antigens (TAAs), immunomodulators, and chimeric antigen receptors (CARs) across various cancer types. The review highlights the ability of mRNA vaccines to encode TSAs and TAAs, enabling personalized cancer treatments, and classifies these vaccines into non-replicating and self-amplifying types. It further explores their mechanisms of action, including antigen presentation and immune activation, while emphasizing findings from clinical studies that demonstrate the potential of mRNA vaccines in cancer therapy. Despite their promise, challenges remain in enhancing delivery systems, improving immunogenicity, and addressing tumor heterogeneity. Overcoming these obstacles will require further investigation to fully harness the potential of mRNA vaccines in personalized cancer treatment.
Humans
;
Cancer Vaccines/immunology*
;
Neoplasms/immunology*
;
mRNA Vaccines/therapeutic use*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
RNA, Messenger/therapeutic use*
5.Advances in cancer vaccines for immunotherapy of prostate cancer.
Tongtong JIN ; Chuan ZHOU ; Lei ZHAO ; Xu DONG ; Fenghai ZHOU
Journal of Central South University(Medical Sciences) 2023;48(1):148-156
Prostate cancer is currently one of the most common malignancies that endanger the lives and health of elderly men. In recent years, immunotherapy, which exploits the activation of anti-cancer host immune cells to accomplish tumor-killing effects, has emerged as a new study avenue in the treatment of prostate cancer. As an important component of immunotherapy, cancer vaccines have a unique position in the precision treatment of malignant tumors. Monocyte cell vaccines, dendritic cell vaccines, viral vaccines, peptide vaccines, and DNA/mRNA vaccines are the most often used prostate cancer vaccines. Among them, Sipuleucel-T, as a monocyte cell-based cancer vaccine, is the only FDA-approved therapeutic vaccine for prostate cancer, and has a unique position and role in advancing the development of immunotherapy for prostate cancer. However, due to its own limitations, Sipuleucel-T has not been widely adopted. Meanwhile, owing to the complexity of immunotherapy and the specificity of prostate cancer, the remaining prostate cancer vaccines have not shown good clinical benefit in large randomized phase II and phase III trials, and further in-depth studies are still needed.
Aged
;
Humans
;
Male
;
Cancer Vaccines/therapeutic use*
;
Immunotherapy
;
Prostate/pathology*
;
Prostatic Neoplasms/pathology*
;
Tissue Extracts/therapeutic use*
6.Research Progress of Lung Cancer Vaccines.
Hao FAN ; Xiangwei GE ; Xin ZHOU ; Yao LI ; An WANG ; Yi HU
Chinese Journal of Lung Cancer 2023;26(9):692-700
With the development of medical technology, tumor vaccines as a novel precise immunotherapy approach have gradually received attention in clinical applications. Against the backdrop of the global corona virus disease 2019 (COVID-19) outbreak, vaccine technology has further advanced. Depending on the types of antigens, tumor vaccines can be divided into whole-cell vaccines, peptide vaccines, messenger ribonucleic acid (mRNA) vaccines, recombinant virus vaccines, etc. Although some tumor vaccines have been marketed and achieved certain therapeutic effects, the results of tumor vaccines in clinical trials have been unsatisfactory in the past period. With the maturation of next-generation sequencing (NGS) technology and the continuous development of bioinformatics, dynamic monitoring of the entire process of tumor subpopulation development has become a reality, which has laid a solid foundation for personalized, neoantigen-centered therapeutic tumor vaccines. This article reviews the recent developments of tumor vaccines of different types, starts with lung cancer and summarizes the achievements of tumor vaccines in clinical applications, and provides an outlook for the future development of antigen-centered tumor vaccines.
.
Humans
;
Cancer Vaccines/therapeutic use*
;
Antigens, Neoplasm
;
Lung Neoplasms/drug therapy*
;
Neoplasms/genetics*
;
Computational Biology
;
Immunotherapy/methods*
;
Lung
7.Cancer immunotherapy: an evolving paradigm.
Journal of Zhejiang University. Science. B 2022;23(10):791-792
The inhibition of the host's natural immune response by tumor cells was widely reported in the early phases of the development of oncology therapy, and the concept of employing the host's immune system to treat cancer, i.e. tumor immunotherapy, is not new. However, as a result of early theoretical constraints, clinical application of immunotherapy did not go smoothly and lagged significantly behind radiation and chemotherapy. The path has been winding, but the future now seems promising. Immunotherapy research has advanced enormously as a result of the maturing of immuno-editing theory and the creation of numerous technologies, despite a number of unsuccessful endeavors and clinical studies. Since around 1998, the US Food and Drug Administration (FDA) has approved a variety of tumor immunotherapies, including cytokines (interleukin-2, interferons), cancer vaccines (Provenge), immune checkpoint inhibitors (ipilimumab), and cellular therapies (chimeric antigen receptor-T (CAR-T)), signaling a boom in the field.
Cancer Vaccines/therapeutic use*
;
Humans
;
Immune Checkpoint Inhibitors
;
Immunotherapy
;
Interferons
;
Interleukin-2/therapeutic use*
;
Ipilimumab
;
Neoplasms/pathology*
;
Receptors, Chimeric Antigen
8.Can tumor vaccines really cure liver cancer?.
Dong Bo CHEN ; Pu CHEN ; Hong Song CHEN
Chinese Journal of Hepatology 2022;30(9):918-922
In China, the incidence of liver cancer remains high. Approximately 80% of diagnosed patients are in the intermediate and advanced stages, with a high recurrence rate and poor prognosis after surgery. Therefore, substantially reducing the incidence and mortality has always been a major clinical challenge for liver cancer. In recent years, immune checkpoint inhibitor therapy represented by programmed death protein 1 (PD-1) antibody is gradually innovating the traditional paradigm of tumor treatment, but the beneficiary population in liver cancer patients is relatively limited. With the rapid development of high-throughput sequencing, proteomics and immunomics and other fields, the demand for precision medicine continues to increase. Tumor vaccines, especially derived from neoantigens, have shown promising therapeutic effects in malignant solid tumors such as melanoma and non-small cell lung cancer due to their immunogenicity. Combining the latest research reports at home and abroad, this paper emphasis on whether tumor vaccines can effectively treat or even cure liver cancer.
Humans
;
Cancer Vaccines/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/drug therapy*
;
Programmed Cell Death 1 Receptor
;
Immunotherapy
;
Lung Neoplasms/drug therapy*
;
Immune Checkpoint Inhibitors
;
Liver Neoplasms/drug therapy*
9.Clinical research progress and implications of therapeutic vaccines for cervical cancer and precancerous lesions: a qualitative systematic review.
Shan CAI ; Ke MIAO ; Xiao Yu TAN ; Si CHENG ; Dan Tong LI ; Xue Yang ZENG ; Yu YANG ; Ruo Gu MENG ; Zhi Ke LIU ; Yan LI ; Ke Li LI ; Feng SUN ; Si Yan ZHAN
Chinese Journal of Oncology 2022;44(7):743-760
Objective: To systematically summarize and analyze the clinical research progress of therapeutic vaccines for cervical cancer or precancerous lesions. Methods: English databases (PubMed, Embase, Web of Science, Cochrane library, Proquest, and ClinicalTrails.gov) and Chinese databases (SinoMed, CNKI, WanFang, and VIP Database) were systematically searched to collect literature on therapeutic vaccines for cervical cancer or precancerous lesions from inception to February 18, 2021. After screening, we evaluated the risk of bias of included studies, and combed the basic information of the literature, research designs, information of vaccines, study patients, outcome indicators and so on, qualitatively summarized the clinical research progress. Results: A total of 71 studies were included in this systematic review, including 14 random controlled trials, 15 quasi-random controlled trials, 4 cohort studies, 1 case-control study, 34 case series studies and 3 case reports. The study patients included women aged 15~79 with cervical cancer or precancerous lesions in 18 countries from 1989 to 2021. On the one hand, there were 40 studies on therapeutic vaccines for cervical precancerous lesions (22 867 participants), involving 21 kinds of vaccines in 6 categories. Results showed 3 marketed vaccines (Cervarix, Gardasil, Gardasil 9) as adjuvant immunotherapies were significant effective in preventing the recurrence of precancerous lesions compared with the conization only. In addition, MVA E2 vaccine had been in phase Ⅲ clinical trials as a specific therapeutic vaccine, with relative literature showing it could eliminate most high-grade precancerous lesions. Therapeutic vaccines for precancerous lesions all showed good safety. On the other hand, there were 31 studies on therapeutic vaccines for cervical cancer (781 participants), involving 19 kinds of vaccines in 7categories, with none had been marketed. 25 studies were with no control group, showing the vaccines could effectively eliminate solid tumors, prevent recurrence, and prolong the median survival time. However, the vaccines effectiveness couldn't be statistically calculated due to the lack of a control group. As for the safety of therapeutic vaccines for cervical cancer, 9 studies showed that patients experienced serious adverse events after treatments, where 7 studies reported that serious adverse events occurred in patients couldn't be ruled out as the results of therapeutic vaccines. Conclusions: The literature review shows that the literature evidence for the therapeutic vaccines for cervical precancerous lesions is relatively mature compared with the therapeutic vaccines for cervical cancer. The four kinds of vaccines on the market are all therapeutic vaccines for precancerous lesions, but they are generally used as vaginal infection treatments or adjuvant immunotherapies for cervical precancerous lesions, not used for the specific treatments of cervical precancerous lesions. Other specific therapeutic vaccines are in the early stage of clinical trials, mainly phase Ⅰ/Ⅱ clinical trials with small sample size. The effectiveness and safety data are limited, and further research is still needed.
Cancer Vaccines/therapeutic use*
;
Cervical Intraepithelial Neoplasia/prevention & control*
;
Female
;
Humans
;
Papillomavirus Infections/prevention & control*
;
Papillomavirus Vaccines/therapeutic use*
;
Precancerous Conditions/therapy*
;
Uterine Cervical Neoplasms/prevention & control*

Result Analysis
Print
Save
E-mail