1.LMP2-DC Vaccine Elicits Specific EBV-LMP2 Response to Effectively Improve Immunotherapy in Patients with Nasopharyngeal Cancer.
Yi ZENG ; Yong Feng SI ; Gui Ping LAN ; Zhan WANG ; Ling ZHOU ; Min Zhong TANG ; O Brien SJ ; Jiao LAN ; Xiang Yang ZHOU ; Yong Li WANG ; Juan TANG ; Zhi Xiang ZHOU ; Hai Jun DU ; Hui LIN
Biomedical and Environmental Sciences 2020;33(11):849-856
Objective:
To evaluate the safety and effectiveness of a vaccine based on latent membrane protein 2 (LMP2) modified dendritic cells (DCs) that boosts specific responses of cytotoxic T lymphocytes (CTLs) to LMP2 before and after intradermal injection in patients with nasopharyngeal carcinoma (NPC).
Methods:
DCs were derived from peripheral blood monocytes of patients with NPC. We prepared LMP2-DCs infected by recombinant adenovirus vector expressing LMP2 (rAd-LMP2). NPC patients were immunized with 2 × 10
Results:
We demonstrated that DCs derived from monocytes displayed typical DC morphologies; the expression of LMP2 in the LMP2-DCs vaccine was confirmed by immunocytochemical assay. Twenty-nine patients with NPC were enrolled in this clinical trial. The LMP2-DCs vaccine was well tolerated in all of the patients. Boosted responses to LMP2 peptide sub-pools were observed in 18 of the 29 patients with NPC. The follow-up data of 29 immunized patients from April, 2010 to April 2015 indicated a five-year survival rate of 94.4% in responders and 45.5% in non-responders.
Conclusion
In this pilot study, we demonstrated that the LMP2-DCs vaccine is safe and effective in patients with NPC. Specific CTLs responses to LMP2 play a certain role in controlling and preventing the recurrence and metastasis of NPC, which warrants further clinical testing.
Adult
;
Aged
;
Cancer Vaccines/therapeutic use*
;
China
;
Dendritic Cells/immunology*
;
Female
;
Humans
;
Immunotherapy/methods*
;
Injections, Intradermal
;
Male
;
Middle Aged
;
Nasopharyngeal Carcinoma/therapy*
;
Nasopharyngeal Neoplasms/therapy*
;
T-Lymphocytes, Cytotoxic/immunology*
;
Viral Matrix Proteins/therapeutic use*
;
Young Adult
2.Current Approaches in Development of Immunotherapeutic Vaccines for Breast Cancer.
Adil ALLAHVERDIYEV ; Gamze TARI ; Melahat BAGIROVA ; Emrah Sefik ABAMOR
Journal of Breast Cancer 2018;21(4):343-353
Cancer is the leading cause of death worldwide. In developed as well as developing countries, breast cancer is the most common cancer found among women. Currently, treatment of breast cancer consists mainly of surgery, chemotherapy, hormone therapy, and radiotherapy. In recent years, because of increased understanding of the therapeutic potential of immunotherapy in cancer prevention, cancer vaccines have gained importance. Here, we review various immunotherapeutic breast cancer vaccines including peptide-based vaccines, whole tumor cell vaccines, gene-based vaccines, and dendritic cell vaccines. We also discuss novel nanotechnology-based approaches to improving breast cancer vaccine efficiency.
Allergy and Immunology
;
Breast Neoplasms*
;
Breast*
;
Cancer Vaccines
;
Cause of Death
;
Dendritic Cells
;
Developing Countries
;
Drug Therapy
;
Female
;
Humans
;
Immunotherapy
;
Radiotherapy
;
Vaccines*
3.Construction and characterization of an attenuated recombinant Listeria monocytogenes vector vaccine delivering HPV16 E7.
Yanyan JIA ; Yuelan YIN ; Weijun TAN ; Feifei DUAN ; Zhiming PAN ; Xiang CHEN ; Xin An JIAO
Chinese Journal of Biotechnology 2016;32(5):683-692
Listeria monocytogenes (L. monocytogenes, LM) is an excellent tumor vaccine vector. In this study, recombinant LM vaccine candidate expressing human papillomavirus type 16 (HPV16) E7 protein was constructed and its charactericts were determined. Through homologous recombination, E7 gene was cloned in frame with the LM4 Phly promoter-signal sequence, and introduced into the chromosome of LM4. The recombinant strain named LM4△hly::E7 with the plasmid-free and antibiotic-resistant gene-free was constructed. LM4△hly::E7 could express and secrete E7-LLO fusion protein; its size is 66 kDa and has immunological activity. Furthermore, LM4△hly::E7 could multiply in RAW264.7 macrophages by confocal laser scanning microscope. Additionally, LM4△hly::E7 could induce specific antibodies against E7 in immunized mice in ELISA. Also, the 50% lethal dose (LD₅₀) of LM4△hly::E7 strain was 3.863×10⁹ CFU (Colony-Forming Units) in C57BL/6 mice with intraperitoneal immunization, which was more attenuated than wild type LM4. Mice immunized with LM4△hly::E7 did not show obvious pathological change. These data show that LM4△hly::E7 expressing E7-LLO fusion protein has good safety, which may provide the materials for research of antitumor effect and would be a promising vaccine candidate for cervical cancer.
Animals
;
Cancer Vaccines
;
immunology
;
Listeria monocytogenes
;
Mice
;
Mice, Inbred C57BL
;
Papillomavirus E7 Proteins
;
immunology
;
Papillomavirus Infections
;
prevention & control
;
Plasmids
;
RAW 264.7 Cells
;
Recombinant Fusion Proteins
;
immunology
;
Vaccines, Attenuated
;
immunology
;
Viral Vaccines
;
immunology
4.MUC1-2VNTR DNA Vaccine Induces Immune Responses in Mouse Model with Multiple Myeloma.
Yue-Bo LIU ; Ze-Ping ZHOU ; Hao WANG ; Hong YANG ; Hong MU ; Gui-Yun HUANG ; You ZHANG
Journal of Experimental Hematology 2015;23(5):1366-1369
OBJECTIVETo investigate the humoral and cellular immune responses induced by MUC1-2VNTR DNA vaccine in multiple myeloma (MM) tumor-bearing mice.
METHODSIn vitro, multiple myeloma cells were transfected by plasmid pcDNA3.1-2VNTR/myc-hisB with Lipofectamine2000. The above-mentioned mouse myeloma cells were inoculated subcutaneously into female BALB/c mice for establishing tumor-bearing animal models. These female BALB/c mice were immunized with pcDNA-2VNTR/myc-hisB or pcDNA/myc-hisB. The cytotoxic T lymphocyte (CTL) activity was detected by the LDH method and the spleen lymphocyte proliferation activity was detected by CCK-8 method.
RESULTSAfter immunization of BALB/c tumor-bearing mice with recombinant plasmid for 25 days, the tumor mass (0.5605 ± 0.2065 g) was significantly lighter than that in the empty plasmid control group (1.521 ± 0.6985 g) (P < 0.01) and the control group (1.5315 ± 0.5425 g) (P < 0.01). The difference of tumor mass was not statislically significant between empty plasmid control group (1.521 ± 0.6985 g) and the control group (1.5315 ± 0.5425 g) (P > 0.05). The CTL and NK cell activity was significantly higher in the group of intramuscular injection with recombinant plasmid than that in control group. The spleen lymphocyte proliferation was statistically significantly increased after being immunized with recombinant plasmid pcDNA3.1-2VNTR/myc-hisB, compared with empty vector (P < 0.01). The results showed that MUC1-2VNTR gene immunization could induce anti-tumor effect in MM tumor-bearing mice.
CONCLUSIONMUC1-2VNTR DNA immunization can elicit both humoral and cellular tumor specific immune response to multiple myeloma in MM tumor-bearing mice. It suggested that the MUC1-2VNTR DNA vaccine may be a potential treatment measure for patients with MM.
Animals ; Cancer Vaccines ; therapeutic use ; Female ; Genetic Vectors ; Humans ; Immunization ; Killer Cells, Natural ; immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Minisatellite Repeats ; Mucin-2 ; genetics ; Multiple Myeloma ; immunology ; therapy ; Neoplasm Transplantation ; Plasmids ; Spleen ; cytology ; T-Lymphocytes, Cytotoxic ; immunology ; Transfection ; Vaccines, DNA ; therapeutic use
5.Induction of apoptosis in hormone-resistant human prostate cancer PC3 cells by inactivated Sendai virus.
Hui GAO ; Xiao Cheng GONG ; Ze Dong CHEN ; Xiao Shuang XU ; Quan ZHANG ; Xiang Ming XU ;
Biomedical and Environmental Sciences 2014;27(7):506-514
OBJECTIVEInactivated Sendai virus particle [hemagglutinating virus of Japan envelope (HVJ-E)] has a potential oncolytic effect due to its ability to induce apoptosis in tumor cells. However, the molecular mechanism of apoptosis induction in cancer cells mediated by HVJ-E has not been fully elucidated. This paper aims to investigate the underlying mechanism of apoptosis induction by HVJ-E in prostate cancer cells (PC3).
METHODSPC3 cells were treated with HVJ-E at various MOI, and then interferon-β (IFN-β) production, and the cell viability and apoptosis were detected by ELISA, MTT-based assay and flow cytometry, respectively. Next, the roles of Jak-Stat, MAPK and Akt pathways played in HVJ-E-induced apoptosis in PC3 cells were analyzed by immunoblot assay. To further evaluate the cytotoxic effect of HVJ-E on PC3 cells, HVJ-E was intratumorally injected into prostate cancers on BALB/c-nude mice, and the tumor volume was monitored for 36 days.
RESULTSHVJ-E induced IFN-β production and activated Jak-Stat signaling pathway, which resulted in the activation of caspase-8, caspase-3, and PARP in PC3 prostate cancer cells post HVJ-E treatment. Furthermore, we observed for the first time that p38 and Jnk MAPKs in PC3 cells contributed to HVJ-E-induced apoptosis. In addition, intratumoral HVJ-E treatment displayed a direct inhibitory effect in an in vivo BALB/c nude mouse prostate cancer model.
CONCLUSIONOur findings have provided novel insights into the underlying mechanisms by which HVJ-E induces apoptosis in tumor cells.
Animals ; Apoptosis ; Cancer Vaccines ; immunology ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; Male ; Mice ; Mice, Inbred BALB C ; Oncolytic Virotherapy ; Prostatic Neoplasms ; Sendai virus ; immunology ; physiology ; Vaccines, Inactivated ; immunology
6.Development of a lung cancer vaccine by transfecting dendritic cells with rAAV/CEA.
Changxuan YOU ; Xiaotao QIAN ; Yuan HE ; Yong LIU ; Paul L HERMONAT
Journal of Southern Medical University 2014;34(4):487-491
OBJECTIVETo study the feasibility of preparing a therapeutic lung cancer vaccine by transfecting dendritic cells (DCs) with adeno-associated virus vector carrying carcino-embryonic antigen gene (rAAV/CEA).
METHODSAdherent cells (monocytes) isolated from the peripheral blood of a healthy donor were infected with rAAV/CEA virus stock or pulsed with CEA peptide (control). The monocytes in both groups were induced into mature DCs with recombinant human GM-CSF, IL-4 and TNF-α. At day 7 of induction, the mature DCs were harvested and mixed with T lymphocytes. T cell proliferation stimulated by the DCs was assessed with (3)H-thymidine uptake, and the expression of IL-4, IFN-γ, CD8, CD4, CD25 and CD69 in cytotoxic T lymphocytes (CTL) was analyzed with flow cytometry. The cytotoxicity of the CTL against the target CEA-positive lung cancer A549 cells was tested by (51)Cr releasing assay.
RESULTSThe DCs transfected with rAAV/CEA strongly stimulated the proliferation of the T cell populations, and the induced CTL showed high expressions of CD8, CD69 and IFN-γ. The transfected DCs exhibited a high killing ability of CEA-positive lung cancer cells, and the killing showed a CEA antigen specificity and was limited by MHC I. These results suggested the ability of rAAV/CEA-transfected DCs in generating specific cellular immunity in vitro.
CONCLUSIONIt is feasible to prepare therapeutic lung cancer vaccines by transfecting DCs with rAAV/CEA.
Cancer Vaccines ; Carcinoembryonic Antigen ; genetics ; Cell Line ; Dendritic Cells ; immunology ; Dependovirus ; genetics ; Genetic Vectors ; Humans ; Monocytes ; immunology ; Transfection
7.Cancer immunoinformatics: a new assistant tool for malignant disease research.
Weijia WANG ; Rupeng ZHANG ; Han LIANG ; Hui ZHANG ; Fangxuan LI ; Jinpu YU ; Hui LI ; Xiubao REN
Chinese Medical Journal 2014;127(6):1149-1154
OBJECTIVETo introduce the recent developments in cancer immunoinformatics with an emphasis on the latest trends and future direction.
DATA SOURCESAll related articles in this review were searched from PubMed published in English from 1992 to 2013. The search terms were cancer, immunoinformatics, immunological databases, and computational vaccinology.
STUDY SELECTIONOriginal articles and reviews those were related to application of cancer immunoinformatics about tumor basic and clinical research were selected.
RESULTSCancer immunoinformatics has been widely researched and applied in a series of fields of cancer research, including computational tools for cancer, cancer immunological databases, computational vaccinology, and cancer diagnostic workflows. Furthermore, the improvement of its theory and technology brings an enlightening insight into understanding and researching cancer and helps expound more deep and complete mechanisms of tumorigenesis and progression.
CONCLUSIONCancer immunoinformatics provides promising methods and novel strategies for the discovery and development of tumor basic and clinical research.
Cancer Vaccines ; therapeutic use ; Computational Biology ; methods ; Humans ; Neoplasms ; diagnosis ; immunology ; prevention & control
8.Preliminary study of the inhibitory effect and mechanism of B16F10-ESAT-6-gpi/IL-21 vaccine on the pulmonary metastasis in mouse models of melanoma.
Xiangfeng HE ; Wen SHI ; Fengshu ZHAO ; Jianhong WANG ; Xiaohong XU ; Qinghe TAN ; Yongqiang SUN ; Dengyu CHEN ; Jun DOU
Chinese Journal of Oncology 2014;36(4):245-249
OBJECTIVETo investigate the effect and mechanism of B16F10-ESAT-6-gpi/IL-21 tumor cell vaccine on pulmonary metastasis in mouse model of melanoma.
METHODSTwelve 8-week old female C57BL/6 mice were used in this study. The mice were injected with wild-type B16F10 cells through tail vein after immunization with B16F10-ESAT-6-gpi/IL-21 tumor cell vaccine, and the pulmonary metastasis was observed. The CD4(+) and CD8(+) T cells were isolated by magnetic activated cell sorting, and then used for the detection of CFSE/7-AAD cytotoxicity by flow cytometry. Serum from the mice immunized with tumor-cell vaccine was used to detect IFN-γ expression by ELISA. The expression of TGF-β2, ZEB1, E-cadherin, and N-cadherin of tumor tissues was detected by RT-PCR and immunofluorescence, respectively.
RESULTSThe mice vaccinated with B16F10-ESAT-6-gpi/IL-21 had significantly fewer nodules in the lung and lower lung weight [(285.8 ± 19.01) mg vs. (406.3 ± 27.12) mg], with lower levels of TGF-β2, ZEB1 and N-cadherin proteins but higher level of E-cadherin protein within the tumor tissue, as compared with the control mice. Meanwhile, the immunized mice had significantly increased CD8(+) T cell killing activity [(42.62 ± 3.465)% vs. (22.29 ± 1.804)%] and IFN-γ expression level [(55.200 ± 7.173) pg/ml vs. (6.435 ± 1.339) pg/ml] over the control mice.
CONCLUSIONSThe B16F10-ESAT-6-gpi/IL-21 vaccine can inhibit the metastasis of melanoma in the lung in vaccinated melanoma-bearing mice. This inhibitory effect is associated with CD8(+) T cell immune response and a higher level of IFN-γ, which may influence on the mesenchymal-epithelial transition of tumor cells.
Animals ; CD8-Positive T-Lymphocytes ; immunology ; Cadherins ; metabolism ; Cancer Vaccines ; immunology ; Cell Line, Tumor ; Epithelial-Mesenchymal Transition ; Female ; Homeodomain Proteins ; metabolism ; Humans ; Interferon-gamma ; metabolism ; Interleukins ; immunology ; Lung ; pathology ; Lung Neoplasms ; metabolism ; secondary ; Melanoma ; metabolism ; pathology ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; Organ Size ; Transcription Factors ; metabolism ; Transforming Growth Factor beta2 ; metabolism ; Zinc Finger E-box-Binding Homeobox 1
9.Advances in immunotherapy for pediatric cancer.
Xiaojun XU ; Haizhao ZHAO ; Yongmin TANG
Chinese Journal of Pediatrics 2014;52(3):231-234
Adolescent
;
Antibodies, Monoclonal
;
therapeutic use
;
Antigens, Neoplasm
;
immunology
;
Cancer Vaccines
;
immunology
;
Child
;
Child, Preschool
;
Humans
;
Immunotherapy
;
methods
;
Infant
;
Killer Cells, Natural
;
immunology
;
Lymphocyte Transfusion
;
Neoplasms
;
immunology
;
therapy
;
Pediatrics
;
Stem Cell Transplantation

Result Analysis
Print
Save
E-mail