1.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
2.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
3.Application of Global Leadership Initiative on Malnutrition criteria in patients with liver cirrhosis
Minjie JIANG ; Juan CHEN ; Muchen WU ; Jing WU ; Xiaotong XU ; Juan LI ; Can LIU ; Yaping ZHAO ; Xin HUA ; Qinghua MENG
Chinese Medical Journal 2024;137(1):97-104
Background::The Global Leadership Initiative on Malnutrition (GLIM) criteria were published to build a global consensus on nutritional diagnosis. Reduced muscle mass is a phenotypic criterion with strong evidence to support its inclusion in the GLIM consensus criteria. However, there is no consensus regarding how to accurately measure and define reduced muscle mass in clinical settings. This study aimed to investigate the optimal reference values of skeletal muscle mass index for diagnosing sarcopenia and GLIM-defined malnutrition, as well as the prevalence of GLIM-defined malnutrition in hospitalized cirrhotic patients.Methods::This retrospective study was conducted on 1002 adult patients with liver cirrhosis between January 1, 2018, and February 28, 2022, at Beijing You-An Hospital, Capital Medical University. Adult patients with a clinical diagnosis of liver cirrhosis and who underwent an abdominal computed tomography (CT) examination during hospitalization were included in the study. These patients were randomly divided into a modeling group (cohort 1, 667 patients) and a validation group (cohort 2, 335 patients). In cohort 1, optimal cut-off values of skeletal muscle index at the third lumbar skeletal muscle index (L3-SMI) were determined using receiver operating characteristic analyses against in-hospital mortality in different gender groups. Next, patients in cohort 2 were screened for nutritional risk using the Nutritional Risk Screening 2002 (NRS-2002), and malnutrition was diagnosed by GLIM criteria. Additionally, the reference values of reduced muscle mass in GLIM criteria were derived from the L3-SMI values from cohort 1. Multivariate logistic regression analysis was used to analyze the association between GLIM-defined malnutrition and clinical outcomes.Results::The optimal cut-off values of L3-SMI were 39.50 cm 2/m 2 for male patients and 33.06 cm 2/m 2 for female patients. Based on the cut-off values, 31.63% (68/215) of the male patients and 23.3% (28/120) of the female patients had CT-determined sarcopenia in cohort 2. The prevalence of GLIM-defined malnutrition in cirrhotic patients was 34.3% (115/335) and GLIM-defined malnutrition was an independent risk factor for in-hospital mortality in patients with liver cirrhosis ( Wald = 6.347, P = 0.012). Conclusions::This study provided reference values for skeletal muscle mass index and the prevalence of GLIM-defined malnutrition in hospitalized patients with liver cirrhosis. These reference values will contribute to applying the GLIM criteria in cirrhotic patients.
4.Construction and application of simulation model of percutaneous intramuscular septal radiofrequency ablation based on COMSOL Multiphysics
Yu-Peng HAN ; Tao ZHANG ; Peng WANG ; Rui HU ; Hong-Liang ZHAO ; Li-Wen LIU ; Can-Hua XU
Chinese Medical Equipment Journal 2024;45(4):45-50
Objective To construct a simulation model for percutaneous intramuscular septal radiofrequency ablation,and to explore the effects of different excitation voltages and ablation time on ablation areas.Methods By using Mimics software the segmentation and three-dimensional surface reconstruction of the tissue in various regions of the heart were realized based on the preoperative CT data of some patients with obstructive hypertrophic cardiomyopathy,and the reconstructed tissue was transformed into three-dimensional solid models with SolidWorks software,then the models were combined with the electrode needle mechanism established in COMSOL Multiphysics simulation software to form a simulation model for percutaneous intramuscular septal radiofrequency ablation.Electromagnetic and thermal multiphysics field boundary conditions were set with the model developed,and the tissue temperature distribution and the effects of ablation time and excitation voltage on the ablation region were simulated and analyzed.Results Simulation analysis of percutaneous intramuscular septal radiofrequency ablation could be carried out with the model developed,and different excitation voltages and ablation time proved to have significant effects on the effective ablation region.Conclusion The model constructed for percutaneous intramuscular septal radiofrequency ablation lays a foundation for the following research of the effects of multiple factors on ablation outcomes,which is of significance for parameter optimization in actual clinical treatment.[Chinese Medical Equipment Journal,2024,45(4):45-50]
5.Simulation study of brain electrical impedance tomography based on radial basis function neural network
Tao ZHANG ; Xin-Yi WANG ; Jiang-Hui HAO ; Lei LIANG ; Can-Hua XU ; Feng FU ; Xue-Chao LIU
Chinese Medical Equipment Journal 2024;45(10):1-6
Objective To study the ability of radial basis function neural network(RBFNN)with different implementations for electrical impedance tomography(EIT)under real brain shapes,to evaluate the advantages and disadvantages of different approaches,and to provide a reference for the selection of practical imaging methods.Methods COMSOL Multiphysics was used to establish a multilayer 2D model with real structure based on brain CT and an EIT simulation dataset.The effects of the exact RBFNN,the orthogonal least squares-based RBFNN(OLS RBFNN)and the K-Means-based BRFNN(K-Means RBFNN)on the image reconstruction result were explored with the dataset constructed.The root mean square error(RMSE)and image correlation coefficient(ICC)were adopted to evaluate the imaging results.Results EIT could be completed with all the three RBFNNs without noise,and the exact RBFNN had the best results with average ICC and RMSE of 0.784 and 0.467,respectively,in the test set.The OLS RBFNN had the best imaging results at a hidden node of 50,with an average ICC and RMSE of 0.788 and 0.462,respectively.The K-Means RBFNN achieved the best imaging results at noise levels of 30,40,50,60,70 and 80 dB with stable ICC and RMSE and high robustness.Conclusion All the three RBFNNs can be used for brain EIT image reconstruction with their own advantages and disadvantages,and the RBFNN has to be selected for EIT reconstruc-tion based on considerations on actual conditions.[Chinese Medical Equipment Journal,2024,45(10):1-6]
6.Protective effects of pueraria isoflavones on myocardial injury in ovariectomized rats via LKB1/AMPK/PGC-1α signaling pathway
Ying ZHANG ; Can-Yue OUYANG ; Lan-Ying CHEN ; Bei-Xin YUAN ; Hong-Wei CUI ; Xin-Xu XIE ; Peng LIU ; Rong-Hua LIU
Chinese Traditional Patent Medicine 2024;46(8):2542-2551
AIM To study the protective effects and mechanism of pueraria isoflavones on myocardial injury in ovariectomized rats.METHODS Thirty-six rats were randomly divided into the sham operation group,the model group,the estradiol valerate group(0.1 mg/kg)and the low,medium and high dose pueraria isoflavones groups(55,110,220 mg/kg).In contrast to the rats of the sham operation group having their small pieces of adipose tissue removal around the ovaries,rats of the other groups had their bilateral ovaries excised,followed by the 16-week corresponding oral drug administration 2 weeks later at a once daily frequency for,6 days a week.At the end of the 16th week,the rats had their hemodynamics[systolic pressure(SBP),diastolic pressure(DBP),mean pressure(MBP),left ventricular systolic pressure(LVSP),left ventricular diastolic pressure(LVMP),and the maximum rate of increase and decrease of left ventricular pressure during isovolumic contraction(±dp/dtmax)]detected by PowerLab;their cardiac pathological changes observed by HE staining;their levels of creatine kinase(CK),lactate dehydrogenase(LDH),total cholesterol(TC),triglyceride(TG),high density lipoprotein cholesterol(HDL-C),low density lipoprotein cholesterol(LDL-C)and glucose(Glu)in plasma detected by biochemical analyzer;their myocardial level of adenosine triphosphate(ATP)detected by colorimetry;their mRNA expressions of glucose transporter 4(GLUT4),lactate dehydrogenase A(LDHA),carnitine palmitoyl transferase-1(CPT-1α),acyl coenzyme A carboxylase(ACC),liver kinase B1(LKB1),adenylate-activated protein kinase(AMPK)and peroxisome proliferator-activated receptor γ coactivator factor 1α(PGC-1α)detected by RT-qPCR;and their myocardial expressions of energy metabolism related proteins LKB1,p-AMPK/AMPK and PGC-1α detected by Western blot.RESULTS Compared with the model group,the pueraria isoflavones groups displayed decreased levels of SBP,DBP,MBP,LVSP,LVMP(P<0.05,P<0.01);increased-dp/dtmax(P<0.05,P<0.01);improved myocardial fibrinolysis,gap widening and inflammatory infiltration caused by ovariectomy;decreased activities of LDH and CK(P<0.05);increased myocardial ATP level(P<0.05,P<0.01);decreased levels of TC,TG,LDL-C and Glu(P<0.05,P<0.01);increased HDL-C level(P<0.05,P<0.01);increased myocardial mRNA expressions of GLUT4,LDHA,CPT-1α,ACC,LKB1,AMPK and PGC-1α(P<0.05,P<0.01);and increased protein expressions of myocardial LKB1,p-AMPK/AMPK and PGC-1α(P<0.05,P<0.01).CONCLUSION Pueraria isoflavones are protective to myocardial injury in ovariectomized rats,and the mechanism may lie in the improvement of energy metabolism-related myocardial proteins via LKB1/AMPK/PGC-1α signaling pathway.
7.Berberine regulates glucose and lipid metabolism via clock-controlled genes to ameliorate insulin resistance of hepatocytes.
Li-Ke YAN ; Can CUI ; Ying WANG ; Shui-Lan ZHU ; Zhong-Hua XU ; Han-Yue XIAO ; Wei-Hua LIU ; Jun TU
China Journal of Chinese Materia Medica 2024;49(23):6368-6377
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively. Periodic acid-Schiff(PAS) staining and lipid fluorescence method were used to detect glycogen and lipids. The immunofluorescence(IF) assay was employed to detect the nuclear localization of BMAL1 and circadian locomotor output cycles kaput(CLOCK) in IR-HepG2 cells. Western blot was employed to determine the protein levels of BMAL1, CLOCK, period circadian clock 2(PER2), cryptochrome circadian regulator 1(CRY1), Rev-Erbα, carbohydrate response element-binding protein(ChREBP), peroxisome proliferator-activated receptors alpha and gamma(PPARα/γ), sterol regulatory element-binding protein 1C(SREBP-1C), mammalian target of rapamycin(mTOR), protein kinase B(Akt), glycogen synthase kinase-3β(GSK3β), acetyl coenzyme A carboxylase 1(ACC1), fatty acid synthase(FASN), carnitine palmitoyltransferase 1α(CPT1α), nicotinamide phosphoribosyltransferase(NAMPT), silent information regulator 1(SIRT1), adiponectin(ADPN), insulin receptor substrate 2(IRS2), and phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85). In addition, the levels of phosphorylated adenosine monophosphate-activated protein kinase alpha(AMPKα), Akt, GSK3β, BMAL1, and mTOR were determined. Furthermore, 20 μmol·L~(-1) CLK8 was added to measure the glucose consumption as well as the protein levels of ChREBP, PPARα, and mTOR in IR-HepG2 cells. The results showed that berberine increased the glucose consumption, lowered the lipid levels, increased the expression and nuclear localization of BMAL1 and CLOCK, and up-regulated the level of BMAL1 in IR-HepG2 cells. Furthermore, berberine up-regulated the levels of ADPN, IRS2, PI3Kp85, p-Akt(Ser473)/Akt, p-mTOR(Ser2448)/mTOR, PPARα, and CPT1α, and down-regulated the levels of p-GSK3β(Ser9)/GSK3β, ChREBP, SREBP-1C, ACC1, and FASN. The addition of CLK8 reduced glucose consumption in IR-HepG2 cells, up-regulated the ChREBP level, and down-regulated PPARα and mTOR levels by inhibiting the BMAL1 and CLOCK interaction. In summary, berberine regulated glucose and lipid metabolism via clock-controlled genes with BMAL1 at the core to ameliorate IR of hepatocytes.
Humans
;
Hepatocytes/drug effects*
;
Lipid Metabolism/drug effects*
;
Glucose/metabolism*
;
Berberine/pharmacology*
;
Insulin Resistance
;
Hep G2 Cells
;
CLOCK Proteins/genetics*
;
ARNTL Transcription Factors/genetics*
8.Mechanism of Gegen Qinlian Decoction in improving glucose metabolism in vitro and in vivo by alleviating hepatic endoplasmic reticulum stress.
Yue JIANG ; Li-Ke YAN ; Ying WANG ; Jun-Feng DING ; Zhong-Hua XU ; Can CUI ; Jun TU
China Journal of Chinese Materia Medica 2023;48(20):5565-5575
This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt
;
Endoplasmic Reticulum Chaperone BiP
;
Caspase 3
;
Caspase 9
;
Diabetes Mellitus, Experimental
;
Caspase 12
;
Calcium/pharmacology*
;
Molecular Docking Simulation
;
Endoplasmic Reticulum Stress
;
Protein Serine-Threonine Kinases/genetics*
;
Liver
;
Apoptosis
;
Insulin
;
Glucose
;
Glycogen/pharmacology*
;
RNA, Messenger
9.Construction of medical instrument experimental training platform and exploration of teaching for biomedical engineering specialties in military colleges and universities
Can-Hua XU ; Bin YANG ; Lei LI ; Xiang TIAN ; Jian-An YE ; Yi-Min ZHOU ; Xue-Chao LIU ; Feng FU
Chinese Medical Equipment Journal 2023;44(9):92-95
The problems existing in the teaching mode of the traditional medical instrument practice course were introduced,and a medical instrument experimental training platform was constructed based on the maintenance demonstrators for monitor and ultrasound machine.Teaching reform was carried out with the developed training platform,and the teaching efficacy was analyzed deeply.References were provided for the improvement of the medical instrument practice course in the biomedical engineering specialties of military colleges and universities.[Chinese Medical Equipment Journal,2023,44(9):92-95]
10.A case of acute poisoning with thiamethoxam.
Xiao Hua LOU ; Bing Wen ZHANG ; Xu Can MA
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(10):779-782
Thiamethoxam belongs to the second generation of neonicotinoid insecticides, and case of acute poisoning with thiamethoxam had never reported in China. This paper reviewed a case of oral poisoning with thiamethoxam pesticides, the patient suffered vomiting, generalized convulsions, confusion, and decreased oxygen saturation. After treated with gastric lavage, ventilator support, and the use of propofol, midazolam, sodium phenobarbital, and sodium valproate, the convulsions could not be controlled. Untill treated with penehyclidine hydrochloride and hemoperfusion combined with hemofiltration, the patient finally recovered and was discharged from the hospital. We suggest that the main treatments for acute severe thiamethoxam poisoning are decontamination and symptomatic support, pentoxifylline hydrochloride and hemoperfusion combined with hemofiltration may improve the patients' prognosis.
Humans
;
Thiamethoxam
;
Hemoperfusion
;
Hemofiltration
;
Prognosis
;
Pesticides
;
Insecticides
;
Neonicotinoids
;
Poisoning/therapy*

Result Analysis
Print
Save
E-mail