1.Literature Based Analysis on Adverse Reactions in Simultaneously Clinical Use of Banxia (Rhizoma Pinelliae)- Wutou (Aconitum)
Can CAO ; Wenyong LIAO ; Jiwen ZHANG ; Yinghao WU ; Xiangnan XU ; Meijing WU ; Xiaoqing LIU ; Shaohong CHEN ; Haiyan LIU ; Linlin XIU ; Xiangqing CUI ; Gaoyang LI ; Ying ZHANG ; Gansheng ZHONG
Journal of Traditional Chinese Medicine 2025;66(9):955-962
ObjectiveTo analyze the adverse reactions associated with the clinical use of Banxia (Rhizoma Pinelliae)- Wutou (Aconitum) in the same formula, with the aim of providing a reference for the safety of their clinical application. MethodsLiterature on the clinical application of antagonistic herbs "Banxia-Wutou" used in the same formula, published from January 1st, 2014, to June 30th, 2023, was retrieved from databases including CNKI, VIP, Wanfang, SinoMed, PubMed, Cochrane Library, and Embase. A database was established, and information related to adverse reactions was extracted, including descriptions, classifications, specific manifestations, management and outcomes, patients' primary diseases (western medicine diseases and traditional Chinese medicine diagnoses and syndromes), and medication information (dosage, ratio, administration routes, and dosage forms). ResultsA total of 79 researches simultaneously used antagonistic herbs Banxia-Wutou in the same formula and reported associated advers reactions. Gastrointestinal adverse reactions were the most common, with 8 studies reporting management of adverse reactions and 3 studies reporting improvement with no intervention. Among the 11 researches, the adverse reaction relieved to extant, while other 69 researches didn't report the managment of adverse reaction and its prognosis. For the primary disease in western medicine system, chronic bronchitis and chronic obstructive pulmonary disease (COPD) were most common, while gastric pain was the most common symptom in traditional Chinese medicine with spleen and kidney deficiency and spleen stomach cold deficiency being the most frequent syndromes. The most common Banxia dosage was 10 g, while for the Wutou, Fuzi (Radix Aconiti Lateralis Praeparata) was predominant with the highest dose at 15 g. The most frequent herbal combination was Banxia-fuzi, with a 1∶1 ratio. The main administration route was oral, and the primary dosage form was decoction. ConclusionGastrointestinal adverse reactions are the most common in the clinical use of Banxia-Wutou antagonistic herb combinations. Research on the safety of "Banxia-Wutou" combinations should focus on respiratory system diseases and spleen-stomach related conditions.
2.Effect of childhood maltreatment on depression in college students: a moderated mediation model
Xinghua LAI ; Huitong ZHAO ; Ruofan XIAO ; Can CUI ; Ameng ZHAO ; Wei FU ; Jing JIANG ; Tinghuizi SHANG ; Honglong LI ; Zengyan YU
Sichuan Mental Health 2025;38(3):247-253
BackgroundCurrently, the problem of depressed mood in college students is becoming more prominent. The experience of childhood maltreatment is a significant contributor to depression among college students. Although the association between the two has been confirmed, the specific psychosocial mechanisms underlying how childhood maltreatment affects college students' mental health remain insufficiently evidenced. ObjectiveTo explore the mediating role of emotion regulation difficulties in the relationship between childhood maltreatment and depression among college students, and to investigate the moderated effects of psychological resilience and family socioeconomic status, aiming to provide references for improving depressive symptoms in college students. MethodsOn 14 March 2024, a cluster sampling method was employed to recruit 751 college students from a university in Heilongjiang Province. Participants were assessed with Childhood Trauma Questionnaire (CTQ), Difficulties in Emotion Regulation Scale (DERS), Patients' Health Questionnaire Depression Scale-9 item (PHQ-9), 10-item Connor-Davidson Resilience Scale (CD-RISC-10) and Family Socioeconomic Status Questionnaire. Pearson correlation analysis was adopted to examine the correlation between the scores of scales. Model 4 and model 7 in Process 4.2 were used to test the mediating effects of emotional regulation difficulties and the moderated effects of psychological resilience and family socioeconomic status. Results① A total of 712 (94.81%) valid questionnaires were collected. ② College students' CTQ score was positively correlated with DERS score and PHQ-9 score (r=0.296, 0.507, P<0.01), and negatively correlated with CD-RISC-10 score and Family Socioeconomic Status Questionnaire score (r=-0.148, -0.229, P<0.01). ③ The indirect effect value of difficulties in emotion regulation on the relationship between childhood maltreatment and depression was 0.091 (95% CI: 0.018~0.046), accounting for 17.95% of the total effect. ④ The first half of the mediation model "childhood maltreatment → difficulties in emotion regulation → depression" (childhood maltreatment → difficulties in emotion regulation) was moderated by psychological resilience (β=-0.030, t=-6.147, 95% CI: -0.040~-0.020) and family socioeconomic status (β=-0.051, t=-3.929, 95% CI: -0.077~-0.026). ConclusionChildhood maltreatment exerts both a direct effect on college students' depression and an indirect effect through emotion regulation difficulties. The childhood maltreatment → emotion regulation difficulties pathway in this mediation model is moderated by psychological resilience and family socioeconomic status. [Funded by Qiqihar Medical University Graduate Student Innovation Fund Project (number, QYYCX2023-48); Special Research Fund Project for Young Doctors of Qiqihar Academy of Medical Sciences (number, QMSI2021B-08)]
3.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
4.Hypoglycemic effect and mechanism of berberine in vitro based on regulation of BMAL1:CLOCK complex involved in hepatic glycolysis, glucose oxidation a nd gluconeogenesis to improve energy metabolism.
Zhong-Hua XU ; Li-Ke YAN ; Wei-Hua LIU ; Can CUI ; Han-Yue XIAO ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(15):4293-4303
This paper aims to investigate the hypoglycemic effect and mechanism of berberine in improving energy metabolism based on the multi-pathway regulation of brain and muscle aromatic hydrocarbon receptor nuclear translocal protein 1(BMAL1): cyclin kaput complex of day-night spontaneous output cyclin kaput(CLOCK). The dexamethasone-induced hepatic insulin resistance(IR) HepG2 cell model was used; 0.5, 1, 5, 10, 20 μmol·L~(-1) berberine were administered at 15, 18, 21, 24, 30, 36 h. The time-dose effect of glucose content in extracellular fluid was detected by glucose oxidase method. The optimal dosage and time of berberine were determined for the follow-up study. Glucose oxidase method and chemiluminescence method were respectively performed to detect hepatic glucose output and relative content of ATP in cells; Ca~(2+), reactive oxygen species(ROS), mitochondrial structure and membrane potential were detected by fluorescent probes. Moreover, ultraviolet colorimetry method was used to detect the liver type of pyruvate kinase(L-PK) and phosphoenol pyruvate carboxykinase(PEPCK). In addition, pyruvate dehydrogenase E1 subunit α1(PDHA1), phosphate fructocrine-liver type(PFKL), forkhead box protein O1(FoxO1), peroxisome proliferator-activated receptor gamma co-activator 1α(PGC1α), glucose-6-phosphatase(G6Pase), glucagon, phosphorylated nuclear factor-red blood cell 2-related factor 2(p-Nrf2)(Ser40), heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), fibroblast growth factor 21(FGF21), uncoupled protein(UCP) 1 and UCP2 were detected by Western blot. BMAL1:CLOCK complex was detected by immunofluorescence double-staining method, combined with small molecule inhibitor CLK8. Western blot was used to detect PDHA1, PFKL, FoxO1, PGC1α, G6Pase, glucagon, Nrf2, HO-1, NQO1, FGF21, UCP1 and UCP2 in the CLK8 group. The results showed that berberine downregulated the glucose content in extracellular fluid in IR-HepG2 cells in a time-and dose-dependent manner. Moreover, berberine inhibited hepatic glucose output and reduced intracellular Ca~(2+) and ROS whereas elevated JC-1 membrane potential and improved mitochondrial structure to enhance ATP production. In addition, berberine upregulated the rate-limiting enzymes such as PFKL, L-PK and PDHA1 to promote glycolysis and aerobic oxidation but also downregulated PGC1α, FoxO1, G6Pase, PEPCK and glucagon to inhibit hepatic gluconeogenesis. Berberine not only upregulated p-Nrf2(Ser40), HO-1 and NQO1 to enhance antioxidant capacity but also upregulated FGF21, UCP1 and UCP2 to promote energy metabolism. Moreover, berberine increased BMAL1, CLOCK and nuclear BMAL1:CLOCK complex whereas CLK8 reduced the nuclear BMAL1:CLOCK complex. Finally, CLK8 decreased PDHA1, PFKL, Nrf2, HO-1, NQO1, FGF21, UCP1, UCP2 and increased FoxO1, PGC1α, G6Pase and glucagon compared with the 20 μmol·L~(-1) berberine group. BMAL1:CLOCK complex inhibited gluconeogenesis, promoted glycolysis and glucose aerobic oxidation pathways, improved the reduction status within mitochondria, protected mitochondrial structure and function, increased ATP energy storage and promoted energy consumption in IR-HepG2 cells. These results suggested that berberine mediated BMAL1:CLOCK complex to coordinate the regulation of hepatic IR cells to improve energy metabolism in vitro.
Humans
;
Berberine/pharmacology*
;
Gluconeogenesis/drug effects*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Liver/drug effects*
;
Energy Metabolism/drug effects*
;
Hypoglycemic Agents/pharmacology*
;
ARNTL Transcription Factors/genetics*
;
Glycolysis/drug effects*
;
Oxidation-Reduction/drug effects*
5.Establishment of a fit prediction model of N95 respirator based on facial images.
Guifang WANG ; Changwei LUO ; Can CUI ; Shengjin WANG ; Jing HUANG
Environmental Health and Preventive Medicine 2025;30():101-101
BACKGROUND:
The protective effectiveness of an N95 respirator depends on the filtration efficiency of the material from which the N95 respirator is made of, as well as the wearers' facial fit. The facial fit of an N95 respirator mainly depends on the degree of matching between the wearers' facial dimension characteristics and the N95 respirator. Quantitative fit testing objectively evaluates the fit of N95 respirators; however, it is not easy to promote because of the limitations of testing conditions. The aim of this study is to establish a fit prediction model of N95 respirator based on facial images.
METHODS:
Facial images and fit factor (FF) value of 5 N95 respirators were gathered from 299 medical staffs in 10 hospitals in Beijing. Face geometry measurement was based on 3D face modelling, and the American TSI-8038 Porta Count Pro+ was used to conduct quantitative fit test. Multiple linear regression analysis was employed to identify facial dimensional features that significantly influenced the fit of N95 respirators. Through matching training of facial image and FF values, a fit prediction model has been established, enabling rapid recommendation of N95 respirators meeting the fit standard via facial image recognition.
RESULTS:
A fit prediction model for N95 respirators based on facial images has been developed, which enables the rapid recommendation of N95 respirators with acceptable FF value for healthcare personnel. The model demonstrated an accuracy of 55.93%, a precision of 98.43%, a recall of 51.65%, and an F1 score of 0.68.
CONCLUSIONS
It is feasible to utilize computer-based facial recognition technology to rapidly recommend N95 respirators for medical personnel. Given the high level of accuracy achieved, the model demonstrates significant potential for practical application.
Humans
;
Face/anatomy & histology*
;
N95 Respirators/standards*
;
Male
;
Adult
;
Female
;
Middle Aged
;
Beijing
6.Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly.
Ya-Ting AI ; Shi ZHOU ; Ming WANG ; Tao-Yun ZHENG ; Hui HU ; Yun-Cui WANG ; Yu-Can LI ; Xiao-Tong WANG ; Peng-Jun ZHOU
Journal of Integrative Medicine 2025;23(4):390-397
OBJECTIVE:
As an age-related neurodegenerative disease, the prevalence of mild cognitive impairment (MCI) increases with age. Within the framework of traditional Chinese medicine, spleen-kidney deficiency syndrome (SKDS) is recognized as the most frequent MCI subtype. Due to the covert and gradual onset of MCI, in community settings it poses a significant challenge for patients and their families to discern between typical aging and pathological changes. There exists an urgent need to devise a preliminary diagnostic tool designed for community-residing older adults with MCI attributed to SKDS (MCI-SKDS).
METHODS:
This investigation enrolled 312 elderly individuals diagnosed with MCI, who were randomly distributed into training and test datasets at a 3:1 ratio. Five machine learning methods, including logistic regression (LR), decision tree (DT), naive Bayes (NB), support vector machine (SVM), and gradient boosting (GB), were used to build a diagnostic prediction model for MCI-SKDS. Accuracy, sensitivity, specificity, precision, F1 score, and area under the curve were used to evaluate model performance. Furthermore, the clinical applicability of the model was evaluated through decision curve analysis (DCA).
RESULTS:
The accuracy, precision, specificity and F1 score of the DT model performed best in the training set (test set), with scores of 0.904 (0.845), 0.875 (0.795), 0.973 (0.875) and 0.973 (0.875). The sensitivity of the training set (test set) of the SVM model performed best among the five models with a score of 0.865 (0.821). The area under the curve of all five models was greater than 0.9 for the training dataset and greater than 0.8 for the test dataset. The DCA of all models showed good clinical application value. The study identified ten indicators that were significant predictors of MCI-SKDS.
CONCLUSION
The risk prediction index derived from machine learning for the MCI-SKDS prediction model is simple and practical; the model demonstrates good predictive value and clinical applicability, and the DT model had the best performance. Please cite this article as: Ai YT, Zhou S, Wang M, Zheng TY, Hu H, Wang YC, Li YC, Wang XT, Zhou PJ. Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly. J Integr Med. 2025; 23(4): 390-397.
Humans
;
Cognitive Dysfunction/diagnosis*
;
Aged
;
Male
;
Female
;
Machine Learning
;
Spleen
;
Aged, 80 and over
;
Kidney
;
Medicine, Chinese Traditional
7.Bioactive glass 45S5 promotes odontogenic differentiation of apical papilla cells through autophagy.
Weilin LIU ; Can SU ; Caiyun CUI
West China Journal of Stomatology 2025;43(1):37-45
OBJECTIVES:
The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
METHODS:
APCs were isolated and cultured in vitro, and the cell origin was identified by flow cytometry. The culture medium was prepared with 1 mg/mL 45S5, and its pH and ion concentration were determined. The experiments were divided into control, 45S5, and 3-methyladenine (3-MA) 45S5 groups. In the 45S5 group, APCs were induced to culture with 1 mg/mL 45S5. In the 3-MA 45S5 group, the autophagy inhibitor 3-MA was added to 1 mg/mL 45S5. Protein immunoblotting assay (Western blot) was used to detect the expression of autophagy-associated proteins of microtubule-associated protein 1 light-chain 3β (LC3B) and P62 after 24 h of induction culture in each group. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of bone sialoprotein (BSP), Runt-related transcription factor 2 (Runx2), dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1) after 7 d of induction culture. Cellular alkaline phosphatase (ALP) staining analyzed cellular ALP activity at 7 d of induction, and alizarin red staining evaluated the formation of mineralized nodules at 21 d of induction.
RESULTS:
The pH of the 45S5 extract culture medium was 8.65±0.01, which was not significantly different from that of the control group (P>0.05). The silicon ion concentration of the 45S5 induction culture medium was (1.56±0.07) mmol/L, which was higher than that of the control group (0.08±0.01) mmol/L (P<0.05). The calcium ion concentration of the 45S5 induction culture was (1.57±0.15) mmol/L, which was not significantly different from that of the control group (P>0.05). Western blot results showed that LC3B-Ⅱ/Ⅰ ratio increased and P62 expression decreased in the 45S5 group compared with those in the control group (P<0.05). By contrast, the ratio decreased and the expression increased in the 3-MA 45S5 group compared with those in the 45S5 group (P<0.05). RT-qPCR results showed that the expression of BSP, Runx2, DMP-1, and DSPP enhanced in the 45S5 group compared with that in the control group (P<0.05), but the expression decreased in the 3-MA 45S5 group compared with that in the 45S5 group (P<0.05). Semi-quantitative analysis of ALP staining and alizarin red staining showed that the ALP activity was enhanced, and the formation mineralized nodule increased in the 45S5 group compared with those in the control group. The ALP activity weakened, and the formation mineralized nodules were reduced in the 3-MA 45S5 group compared with that those in the 45S5 group.
CONCLUSIONS
Cell autophagy participates in the odontogenic differentiation of APCs induced by 1 mg/mL 45S5 in vitro.
Autophagy/drug effects*
;
Cell Differentiation/drug effects*
;
Odontogenesis/drug effects*
;
Dental Papilla/cytology*
;
Humans
;
Microtubule-Associated Proteins/metabolism*
;
Glass/chemistry*
;
Cells, Cultured
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Extracellular Matrix Proteins/metabolism*
;
Ceramics/pharmacology*
;
Adenine/pharmacology*
;
Sialoglycoproteins/metabolism*
;
Phosphoproteins/metabolism*
;
Integrin-Binding Sialoprotein/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA-Binding Proteins
8.Application of Decentralized Clinical Trials in the Research and Development of Drugs for Rare Diseases
Huanhuan CUI ; Ling TANG ; Can CUI ; Zhuxing YAO ; Zhimin YANG ; Haixue WANG
JOURNAL OF RARE DISEASES 2024;3(2):175-180
Clinical trials of drugs for rare diseases face special challenges such as a limited number of patients,difficult recruitment,long trial period,and frequent video interviews during the trial.Therefore,in the clinical operation of rare diseases,a decentralized clinical trials(DCT)model based on the"patient-cen-tred"research and development concept is implemented.With the help of decentralized elements and digital health technology,the barriers of geographical restrictions can be overcome and subjects do not have to be limit-ed to traditional clinical trial sites(hospitals/research centers),which can significantly reduce the burden on subjects,increase their representation,and obtain a wider range of scientific research data.To guide the indus-try's scientific and standardized application of DCT in the research and development of drugs for rare diseases,the Center for Drug Evaluation of the National Medical Products Administration(NMPA)organized the stake holders to draft the Technical Guideline for the Application of Decentralized Clinical Trials in the Research and Development of Drugs for Rare Diseases.This guideline provides scientific recommendations for the development and implementation of DCT for rare disease drugs.It aims to solve the difficult and key problems during rare disease drug research and development,improve the efficiency and optimize patient experience.This article,combining the research and development concepts in the guideline,explains the current research and develop-ment thinking on the application of DCT in the research and development of rare disease drugs,with a view of providing reference for the industry.
9.Clinical trial of dulaglutide combined with insulin aspart and metformin in the treatment of elderly patients with T2DM and obesity
Qing-Qing XIE ; Ming-Tai WANG ; Dong-Ming ZHANG ; Cui-Fan LI ; Can-Can CUI
The Chinese Journal of Clinical Pharmacology 2024;40(20):2934-2938
Objective To observe the effect of dulaglutide combined with insulin aspart and metformin on blood glucose,pancreatic beta-cell status and physique in elderly patients with type 2 diabetes mellitus(T2DM)and obesity.Methods Elderly patients with T2DM and obesity were divided into the control group and the treatment group according to the queue method.Both groups were given intensive insulin therapy with insulin aspart injection at 0.4-0.6 U·kg-1·d-1 and oral administration of 0.5 g of metformin tablets,tid.A week later,the treatment of control group was switched to sequential therapy with insulin glargine injection at an initial dose of 0.4-0.6 U·kg-1·d-1,qn.The dose was adjusted according to blood glucose concentration.During this period,0.5 g of metformin tablets was administrated,tid,for 12 consecutive weeks.Meanwhile,treatment of the treatment group was switched to sequential therapy with 1.5 mg of dulaglutide injection,once a week.During this period,0.5 g of metformin tablets was administrated,tid,for 12 consecutive weeks.The two groups were compared in terms of clinical efficacy,blood glucose level[glycosylated hemoglobin(HbAlc),fasting plasma glucose(FPG)],pancreatic beta-cell status[fasting insulin(FINS),homeostasis model assessment-β(HOMA-β)and homeostasis model assessment-insulin resistance index(HOMA-IR)],and physical parameters[waist circumference and body mass index(BMI)].Safety was evaluated.Results Fifty-three cases and fifty-one cases were included in the treatment group and the control group,respectively.After treatment,the total effective rates of the treatment group and the control group were 98.11%(52 cases/53 cases)and 84.31%(43 cases/51 cases),and the difference was statistically significant(P<0.05).After treatment,HbAlc in the treatment and the control group were(7.01±0.75)%and(7.63±0.82)%;FPG levels were(6.23±0.70)and(6.62±0.74)mmol·L-1;FINS levels were(5.25±1.06)and(6.48±1.12)mU·L-1;HOMA-β were 32.62±6.53 and 27.19±5.18;HOMA-IR were 1.31±0.25 and 1.65±0.28;waist circumference were(82.31±6.04)and(85.79±6.82)cm;BMI were(27.14±1.23)and(27.91±1.15)kg·m-2.The differences in above indicators between the treatment group and the control group were statistically significant(all P<0.05).Adverse drug reactions in the treatment group mainly included nausea,vomiting and skin rash.Adverse drug reactions in the control group mainly included nausea and vomiting.The total incidence rates of adverse drug reactions in the treatment and the control group were 11.32%and 9.80%,without statistically significant difference(P>0.05).Conclusion Dulaglutide combined with insulin aspart and metformin can effectively improve blood glucose,lipids,inflammation and pancreatic β-cell status in elderly patients with T2DM and obesity,reduce glycemic excursions,and promote decreases in waist circumference and BMI,with good safety.
10.Jiaotaiwan improves brain glucose metabolism in a mouse model of Alzheimer's disease by activating the PI3K/AKT signaling pathway
Yan WANG ; Yuqing RUAN ; Can CUI ; Xiu WANG
Journal of Southern Medical University 2024;44(5):894-903
Objective To investigate the effect of Jiaotaiwan on brain insulin-PI3K/AKT pathway in a mouse model of Alzheimer's disease(AD).Methods Fifty 3-month-old male APP/PS1 double transgenic mice were randomized into AD model group,low-,medium-and high-dose Jiaotaiwan treatment groups,and donepezil treatment group.Cognitive functions of the mice were assessed using water maze and open field tests,and neuronal pathologies were observed with HE staining and Nissl staining;immunohistochemistry was used to detect amyloid Aβ deposition in the brain.Fasting serum insulin levels of the mice were measured,and the expressions of Aβ42,insulin-PI3K/AKT pathway components and downstream glucose transporters in the brain tissue were detected with RT-qPCR and Western blotting.Results The AD mouse models exhibited obvious impairment of learning and memory abilities,significantly reduced hippocampal neurons,and obvious Aβ amyloid plaques in the brain tissue with increased Aβ42 protein expression(P<0.05)and insulin resistance index,decreased hippocampal PI3K expressions,lowered expressions of AKT and InR,reduced expressions of GLUT1,GLUT3,and GLUT4,and increased expression of GSK3β in both the hippocampus and cortex.Treatment with Jiaotaiwan and donepezil both effectively improved memory ability of the mouse models,increased the number of hippocampal neurons,reduced Aβ amyloid plaques and increased the expressions of PI3K,AKT,InR,GLUT1,GLUT3 and GLUT4 in the hippocampus and cortex.Conclusion Jiaotaiwan improves learning and memory abilities of APP/PS1 double transgenic mice and delay the development of AD by activating the PI3K/AKT pathway and regulating the expression levels of its downstream GLUTs in the brain.

Result Analysis
Print
Save
E-mail