1.Mechanism of Compound Ziyin Granules in improving postmenopausal osteoporosis by modulating Wnt/β-catenin pathway.
Wen-Jing LIU ; Fan XIE ; Piao-Piao WANG ; Yu-Ting SUN ; Wen-Yan LI
China Journal of Chinese Materia Medica 2025;50(16):4659-4667
This study investigates the therapeutic effect and underlying mechanism of Compound Ziyin Granules(CZYG) on postmenopausal osteoporosis(PMOP) induced by bilateral ovariectomy in rats. Six-month-old female SD rats were randomly divided into sham-operated(sham) group, ovariectomy(OVX) model group, high-, medium-, and low-dose CZYG groups, and alendronate sodium(AS) group. After 30 days of model establishment, treatment was administered by gavage once daily for 8 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of calcium ions, alkaline phosphatase(AKP), estrogen(E_2), osteoprotegerin(OPG), osteocalcin(BGP), tartrate-resistant acid phosphatase(TRAP), and type Ⅰ procollagen N-terminal propeptide(PINP). Hematoxylin-eosin(HE) staining was used to observe the histopathological changes in the femurs of rats, while micro-computed tomography(micro-CT) was used to analyze the microstructure of the distal femur. Western blot analysis was performed to measure the expression levels of bone metabolism-related proteins, including wingless-type MMTV integration site family member 2(Wnt2), β-catenin, low-density lipoprotein receptor-related protein 5(LRP5), glycogen synthase kinase-3β(GSK-3β). The mRNA expression levels of Wnt2, β-catenin, LRP5, GSK-3β, p-GSK-3β were determined by quantitative real-time PCR(qRT-PCR). Thirty days after bilateral ovariectomy, compared to the sham group, the OVX group showed significant increases in body weight and significant decreases in uterine coefficient. After 8 weeks of treatment, compared to the OVX group, CZYG(medium and high doses) and AS reduced body weight, with high-dose CZYG and AS significantly increasing the uterine coefficient. Serum levels of AKP and TRAP were significantly elevated, while levels of calcium, E_2, BGP, and OPG were significantly decreased in the OVX group. Compared to the OVX group, CZYG and AS significantly reduced serum levels of AKP and TRAP, while high-dose CZYG and AS notably increased the levels of E_2, BGP, OPG, and PINP. Micro-CT and HE staining results indicated that CZYG(medium and high doses) and AS significantly increased bone tissue volume, trabecular number, bone mineral density, and improved the microstructure of the femur. Compared to the OVX group, high-dose CZYG and AS significantly upregulated the protein and mRNA expression levels of Wnt2, β-catenin, and LRP5, and downregulated the phosphorylation level of p-GSK-3β. These results suggest that CZYG can improve PMOP by promoting estrogen secretion, improving bone metabolism indicators, increasing trabecular number and bone mineral density. Its mechanism may be related to the regulation of the Wnt/β-catenin signaling pathway.
Animals
;
Female
;
Rats, Sprague-Dawley
;
Osteoporosis, Postmenopausal/genetics*
;
Rats
;
Wnt Signaling Pathway/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
beta Catenin/genetics*
;
Osteoprotegerin/metabolism*
;
Ovariectomy
;
Calcium/blood*
;
Bone Density/drug effects*
2.Hypericin ameliorates stress-induced depressive-like behaviors in mice by modulating the CN-NFAT calcium signaling pathway in microglia.
Zhengtao GAO ; Pingyan LIN ; Bingcan ZHOU ; Mingheng CHEN ; Erqi LIU ; Tianxiang LEI ; Huixin NI ; Haixin LIU ; Yao LIN ; Qian XU
Journal of Southern Medical University 2025;45(3):506-513
OBJECTIVES:
To investigate the role of the calcium/calmodulin (CaM)-mediated activation of calcineurin (CN)-nuclear factor of activated T cells (NFAT) signaling pathway in mediating the regulatory effect of hyperforin (HY) on stress-induced depression-like disorder (DP) in mice.
METHODS:
C57BL/6J mice were randomly divided into control group, DP model group, and hyperforin treatment group (n=15). Behavioral changes of the mice were assessed using open field test (OFT), sucrose preference test (SPT), tail suspension test (TST), light/dark box test (LDB), and novel object suppression test (NSFT). Immunohistochemistry was used to detect tyrosine hydroxylase (TH) expression in the CA1 region of the hippocampus, and serum serotonin (5-HT) and norepinephrine (NA) levels were detected with ELISA. Western blotting was used to analyze the expressions of TNF-α, IL-1β, IL-2, and CN-NFAT pathway proteins. In cultured BV-2 microglial cells with lipopolysaccharide (LPS) stimulation, the effects of hyperforin and CN inhibitor (CNIS) on expressions of ionized calcium-binding adapter molecule 1 (IBA-1), 5-HT, NA, inflammatory cytokines and CN-NFAT pathway proteins were examined using immunofluorescence assay, ELISA or Western blotting.
RESULTS:
Compared with the control mice, the mice in DP group showed significantly reduced activity in OFT, decreased sucrose consumption in SPT, reduced shuttle crossing in LDB, and lowered food intake in NSFT with significantly increased immobility in TST. The mice with DP showed significantly decreased TH-positive neurons, lowered 5-HT and NA levels, and increased expressions of TNF-α, IL-1β, IL-2 and CaM-CN-NFAT pathway proteins. In cultured BV-2 cells, LPS stimulation strongly increased cellular IBA-1 expression, decreased the levels of neurotransmitters (5-HT and NA), and increased the levels of inflammatory cytokines and CN-NFAT signaling, and these changes were effectively reversed by treatment with hyperforin or CNIS.
CONCLUSIONS
Hyperforin improves stress-induced depression-like behaviors in mice and activated BV-2 cells by targeting the CN-NFAT signaling pathway.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Microglia/drug effects*
;
Depression/etiology*
;
Perylene/pharmacology*
;
Calcineurin/metabolism*
;
NFATC Transcription Factors/metabolism*
;
Calcium Signaling/drug effects*
;
Stress, Psychological
;
Phloroglucinol/pharmacology*
;
Signal Transduction
;
Male
;
Behavior, Animal/drug effects*
;
Terpenes
3.Modulation of Ryanodine Receptors on Microglial Ramification, Migration, and Phagocytosis in an Alzheimer's Disease Mouse Model.
Yulin OUYANG ; Zihao CHEN ; Qiang HUANG ; Hai ZHANG ; Haolin SONG ; Xinnian WANG ; Wenxiu DONG ; Yong TANG ; Najeebullah SHAH ; Shimin SHUAI ; Yang ZHAN
Neuroscience Bulletin 2025;41(11):2063-2077
Microglial functions are linked to Ca2+ signaling, with endoplasmic reticulum (ER) calcium stores playing a crucial role. Microglial abnormality is a hallmark of Alzheimer's disease (AD), but how ER Ca2+ receptors regulate microglial functions under physiological and AD conditions remains unclear. We found reduced ryanodine receptor 2 (Ryr2) expression in microglia from an AD mouse model. Modulation of RyR2 using S107, a RyR-Calstabin stabilizer, blunted spontaneous Ca2+ transients in controls and normalized Ca2+ transients in AD mice. S107 enhanced ATP-induced migration and phagocytosis while reducing ramification in control microglia; however, these effects were absent in AD microglia. Our findings indicate that RyR2 stabilization promotes an activation state shift in control microglia, a mechanism impaired in AD. These results highlight the role of ER Ca2+ receptors in both homeostatic and AD microglia, providing insights into microglial Ca2+ malfunctions in AD.
Animals
;
Microglia/pathology*
;
Alzheimer Disease/pathology*
;
Phagocytosis/drug effects*
;
Ryanodine Receptor Calcium Release Channel/metabolism*
;
Disease Models, Animal
;
Mice
;
Cell Movement/drug effects*
;
Mice, Transgenic
;
Calcium Signaling/physiology*
;
Calcium/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Endoplasmic Reticulum/metabolism*
4.Establishment and application of a high-throughput screening method for drugs targeting the 5-hydroxytryptamine 2A receptor based on cellular calcium flux signals.
Bingqian ZHANG ; Jingjing SHI ; Yi ZHANG ; Yuanqing CHEN ; Liqin LI ; Miao WANG ; Ruihua ZHANG
Chinese Journal of Biotechnology 2025;41(8):3287-3300
The 5-hydroxytryptamine 2A receptor (5-HT2AR) is one of the key targets in the development of novel antidepressants. To develop new antidepressants targeting the 5-HT2A receptor, this study established a high-throughput screening method for drugs targeting the 5-HT2A receptor based on the principle of detecting calcium flux signals. The immunofluorescence assay and western blotting were employed to evaluate receptor expression levels in the 5-HT2AR-CHO cell line. The reaction system parameters, including cell seeding density, DMSO concentration, and dye incubation time, were optimized with Z'-factor and signal window values as evaluation indicators. The specificity, precision, stability, and applicability of the method were assessed. Results indicated that the 5-HT2AR-CHO cell line stably expressed high levels of the 5-HT2A receptor. The optimized screening method involved a reaction system with 10 000 cells/well, 0.2% DMSO, and 2 h incubation with Calcium 6 dye. The method demonstrated excellent specificity, with inter-batch precision below 10% for the detection of 5-hydroxytryptamine (5-HT) at low, medium, and high concentrations. Testing four compounds that target the 5-HT2A receptor- agonists 2,5-dimethoxy-4-iodoamphetamine (DOI), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and lysergic acid diethylamide (LSD), along with the antagonist MDL100907-yielded Z'-factors (at EC80) greater than 0.85 and signal window values over 0.91. The EC50 values of these compounds were in the nanomolar range, and their potency rank order aligned with previously reported data, confirming the reliability of the established method. When being applied to the detection of 38 known active compounds, the method efficiently identified 5-HT2A receptor agonists and antagonists while showing no response to non-target compounds. In conclusion, this study successfully constructs a high-throughput screening approach for 5-HT2A receptor-targeting drugs based on calcium flux signals. The method possesses strong specificity, high sensitivity, and robust stability, being suitable for screening antidepressants targeting the 5-HT2A receptor.
High-Throughput Screening Assays/methods*
;
Receptor, Serotonin, 5-HT2A/metabolism*
;
Animals
;
CHO Cells
;
Cricetulus
;
Calcium Signaling/drug effects*
;
Antidepressive Agents/pharmacology*
;
Humans
;
Serotonin 5-HT2 Receptor Antagonists/pharmacology*
;
Calcium/metabolism*
6.Long-term dexamethasone treatment diminishes store-operated Ca entry in salivary acinar cells.
Yuichiro KUSUDA ; Yusuke KONDO ; Yuta MIYAGI ; Takashi MUNEMASA ; Yusuke HORI ; Fumiko AONUMA ; Shintaro TSUKA ; Taro MUKAIBO ; Chihiro MASAKI ; Ryuji HOSOKAWA
International Journal of Oral Science 2019;11(1):1-1
Corticosteroids are used in the treatment of many diseases; however, they also induce various side effects. Dexamethasone is one of the most potent corticosteroids, and it has been reported to induce the side effect of impaired salivary gland function. This study aimed to evaluate the effects of dexamethasone on mouse submandibular gland function to gain insight into the mechanism of dexamethasone-induced salivary hypofunction. The muscarinic agonist carbachol (CCh) induced salivary secretion and was not affected by short-term dexamethasone treatment but was decreased following long-term dexamethasone administration. The expression levels of the membrane proteins Na-K-2Cl cotransporter, transmembrane member 16A, and aquaporin 5 were comparable between the control and long-term dexamethasone treatment groups. The CCh-induced increase in calcium concentration was significantly lower in the presence of extracellular Ca in the long-term dexamethasone treatment group compared to that in the control group. Furthermore, CCh-induced salivation in the absence of extracellular Ca and Ca ionophore A23187-induced salivation was comparable between the control and long-term dexamethasone treatment groups. Moreover, salivation induced by the Ca-ATPase inhibitor thapsigargin was diminished in the long-term dexamethasone treatment group. In summary, these results demonstrate that short-term dexamethasone treatment did not impair salivary gland function, whereas long-term dexamethasone treatment diminished store-operated Ca entry, resulting in hyposalivation in mouse submandibular glands.
Acinar Cells
;
drug effects
;
metabolism
;
Animals
;
Calcium
;
metabolism
;
Calcium Signaling
;
drug effects
;
Carbachol
;
pharmacology
;
Dexamethasone
;
therapeutic use
;
Mice
;
Muscarinic Agonists
;
pharmacology
;
Saliva
;
metabolism
;
Salivation
;
drug effects
;
Submandibular Gland
;
drug effects
;
metabolism
7.ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis.
Song FAN ; Zong-Yao HAO ; Li ZHANG ; Jun ZHOU ; Yi-Fei ZHANG ; Shen TAI ; Xian-Sheng ZHANG ; Chao-Zhao LIANG
Asian Journal of Andrology 2018;20(3):300-305
This study aims to validate our hypothesis that acid-sensing ion channels (ASICs) may contribute to the symptom of pain in patients with chronic prostatitis (CP). We first established a CP rat model, then isolated the L5-S2 spinal dorsal horn neurons for further studies. ASIC1a was knocked down and its effects on the expression of neurogenic inflammation-related factors in the dorsal horn neurons of rat spinal cord were evaluated. The effect of ASIC1a on the Ca2+ ion concentration in the dorsal horn neurons of rat spinal cord was measured by the intracellular calcium ([Ca2+]i) intensity. The effect of ASIC1a on the p38/mitogen-activated protein kinase (MAPK) signaling pathway was also determined. ASIC1a was significantly upregulated in the CP rat model as compared with control rats. Acid-induced ASIC1a expression increased [Ca2+]i intensity in the dorsal horn neurons of rat spinal cord. ASIC1a also increased the levels of neurogenic inflammation-related factors and p-p38 expression in the acid-treated dorsal horn neurons. Notably, ASIC1a knockdown significantly decreased the expression of pro-inflammatory cytokines. Furthermore, the levels of p-p38 and pro-inflammatory cytokines in acid-treated dorsal horn neurons were significantly decreased in the presence of PcTx-1, BAPTA-AM, or SB203580. Our results showed that ASIC1a may contribute to the symptom of pain in patients with CP, at least partially, by regulating the p38/MAPK signaling pathway.
Acid Sensing Ion Channel Blockers/pharmacology*
;
Acid Sensing Ion Channels/genetics*
;
Animals
;
Calcium/metabolism*
;
Chelating Agents/pharmacology*
;
Chronic Disease
;
Cytokines/metabolism*
;
Disease Models, Animal
;
Egtazic Acid/pharmacology*
;
Gene Knockdown Techniques
;
Imidazoles/pharmacology*
;
Inflammation/metabolism*
;
MAP Kinase Signaling System/genetics*
;
Male
;
Pain/genetics*
;
Peptides/pharmacology*
;
Phosphorylation/drug effects*
;
Posterior Horn Cells/metabolism*
;
Prostatitis/complications*
;
Protein Kinase Inhibitors/pharmacology*
;
Pyridines/pharmacology*
;
Rats
;
Spider Venoms/pharmacology*
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/metabolism*
8.Investigation of Pain Mechanisms by Calcium Imaging Approaches.
Michael ANDERSON ; Qin ZHENG ; Xinzhong DONG
Neuroscience Bulletin 2018;34(1):194-199
Due to the complex circuitry and plethora of cell types involved in somatosensation, it is becoming increasingly important to be able to observe cellular activity at the population level. In addition, since cells rely on an intricate variety of extracellular factors, it is important to strive to maintain the physiological environment. Many electrophysiological techniques require the implementation of artificially-produced physiological environments and it can be difficult to assess the activity of many cells simultaneously. Moreover, imaging Ca transients using Ca-sensitive dyes often requires in vitro preparations or in vivo injections, which can lead to variable expression levels. With the development of more sensitive genetically-encoded Ca indicators (GECIs) it is now possible to observe changes in Ca transients in large populations of cells at the same time. Recently, groups have used a GECI called GCaMP to address fundamental questions in somatosensation. Researchers can now induce GCaMP expression in the mouse genome using viral or gene knock-in approaches and observe the activity of populations of cells in the pain pathway such as dorsal root ganglia (DRG), spinal neurons, or glia. This approach can be used in vivo and thus maintains the organism's biological integrity. The implementation of GCaMP imaging has led to many advances in our understanding of somatosensation. Here, we review the current findings in pain research using GCaMP imaging as well as discussing potential methodological considerations.
Afferent Pathways
;
physiology
;
Animals
;
Calcium
;
metabolism
;
Calcium Signaling
;
drug effects
;
genetics
;
Ganglia, Spinal
;
metabolism
;
Humans
;
Pain
;
metabolism
;
pathology
9.Effects of tetramethylypyrazine nitrone on proliferation and differentiation of neural stem cells .
Shi-Jin CHEN ; Dong CHEN ; Yu-Fang SHI ; Jun LIU ; Song HAN ; Wei LI
Chinese Journal of Applied Physiology 2018;34(2):150-153
OBJECTIVES:
To investigate the role of tetramethylpyrazine(TMP) nitrone in proliferation and differentiation of neural stem cells (NSCs).
METHODS:
We separated and cultivated the original generation of NSCs from cerebral cortex of 14 days rat embryo, and the phenotype characteristics of the third-generation NSCs was tested by immunofluorescence. The experiment was divided into control group, β-mercaptoethanol positive control group, tetramethylpyrazine nitrone group and tetramethylpyrazine nitrone + ethylene glycol tetraacetic acid(EGTA) group (=4). The third-generation cultivation of NSCs was used in the experiment. The effect of tetramethylpyrazine nitrone on the number of NSCs proliferation was determined by BrdU and MTT, and the differentiation of NSCs was determined by Western blot.
RESULTS:
The primary NSCs was isolated successfully, neurospheres with typical NSCs morphology and expressing nestin was formed at 3-5 days. As BrdU and MTT assay results shown, compared with the control group andβ-mercaptoethanol positive control group, the NSCs proliferation numbers of tetramethylpyrazine nitrone group increased significantly(<0.05). The results of Western blot showed that the neuronal differentiation rate of NSCs was increased significantly in both the tetramethylpyrazine nitrone group and tetramethylpyrazine nitrone + EGTA group, and the differentiation rate of NSCs in tetramethylpyrazine nitrone + EGTA group increased more significantly(<0.05).
CONCLUSIONS
Tetramethylpyrazine nitrone can significantly enhance the proliferation and neuronal differentiation rate of NSCs. Decrease in extracellular Ca can promote the differentiation of NSCs into neurons induced by tetramethylpyrazine nitrone. Ca signaling plays an important role in the differentiation of NSCs into neurons.
Animals
;
Calcium Signaling
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Neural Stem Cells
;
cytology
;
drug effects
;
Nitrogen Oxides
;
pharmacology
;
Pyrazines
;
pharmacology
;
Rats
10.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
Animals
;
Aorta
;
cytology
;
metabolism
;
physiology
;
Calcium Signaling
;
Cells, Cultured
;
Large-Conductance Calcium-Activated Potassium Channels
;
metabolism
;
Male
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
physiology
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Norepinephrine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine
;
pharmacology
;
Tacrolimus
;
pharmacology
;
Vasoconstriction

Result Analysis
Print
Save
E-mail