1.Stimulation mechanism of osteoblast proliferation and differentiation by Duzhong Decoction-containing serum through L-VGCCs.
Ze-Bin CHEN ; Lan-Lan LUO ; Xin-Yi SHI ; Rui-Tong ZHAO ; Cai-Xian HU ; Yun-Ying FU ; Su-Zhen CHAO ; Bo LIU
China Journal of Chinese Materia Medica 2025;50(12):3335-3345
This paper aimed to explore the effects of Duzhong Decoction(DZD)-containing serum on the proliferation and osteoblast differentiation of MC3T3-E1 cells through L-type voltage-gated calcium channels(L-VGCCs). L-VGCCs inhibitors, nifedipine and verapamil, were used to block L-VGCCs in osteoblasts. MC3T3-E1 cells were divided into a control group, a low-dose DZD-containing serum(L-DZD) group, a medium-dose DZD-containing serum(M-DZD) group, a high-dose DZD-containing serum(H-DZD) group, a nifedipine group, a H-DZD + nifedipine group, verapamil group, and a H-DZD + verapamil group. The CCK-8 method was used for cell proliferation analysis, alkaline phosphatase(ALP) assay kits for intracellular ALP activity measurement, Western blot for protein expression level in cells, real-time fluorescence quantitative PCR technology for intracellular mRNA expression level determination, fluorescence spectrophotometer for free Ca~(2+) concentration determination in osteoblasts, and alizarin red staining(ARS) for mineralized nodule formation in osteoblasts. The experimental results show that compared to the control group, DZD groups can promote MC3T3-E1 cell proliferation, ALP activity, and mineralized nodule formation, increase intracellular Ca~(2+) concentrations, and upregulate the protein expression of bone morphogenetic protein 2(BMP2), collagen Ⅰ(COL1), α2 subunit protein of L-VGCCs(L-VGCCα2), and the mRNA expression of Runt-related transcription factor 2(RUNX2), and BMP2. After blocking L-VGCCs with nifedipine and verapamil, the intervention effects of DZD-containing serum were inhibited to varying degrees. Both nifedipine and verapamil could inhibit ALP activity, reduce mineralized nodule areas, and downregulate the expression of bone formation-related proteins. Moreover, the effects of DZD-containing serum on increasing MC3T3-E1 cell proliferation, osteoblast differentiation, and Ca~(2+) concentrations, upregulating the mRNA expression of osteoprotegerin(OPG) and protein expression of phosphorylated protein kinase B(p-Akt) and phosphorylated forkhead box protein O1(p-FOXO1), and upregulating phosphatase and tensin homolog(PTEN) expression were reversed by nifedipine. The results indicate that DZD-containing serum can increase the Ca~(2+) concentration in MC3T3-E1 cells to promote bone formation, which may be mediated by L-VGCCs and the PTEN/Akt/FoxO1 signaling pathway, providing a new perspective on the mechanism of DZD in treating osteoporosis.
Animals
;
Osteoblasts/metabolism*
;
Cell Proliferation/drug effects*
;
Cell Differentiation/drug effects*
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Calcium Channels, L-Type/genetics*
;
Alkaline Phosphatase/genetics*
;
Serum/chemistry*
;
Cell Line
;
Osteogenesis/drug effects*
;
Bone Morphogenetic Protein 2/genetics*
2.Hesperetin Relaxes Depolarizing Contraction in Human Umbilical Vein by Inhibiting L-Type Ca2+ Channel.
Kritsana TIPCOME ; Wattana B WATANAPA ; Katesirin RUAMYOD
Chinese journal of integrative medicine 2025;31(5):412-421
OBJECTIVE:
To study hesperetin-induced vasorelaxation after depolarizing contraction in human umbilical veins (HUVs) to elucidate the role of L-type Ca2+ channel (LTCC) and related signaling pathway.
METHODS:
Isometric tension recording was performed in HUV rings pre-contracted with K+. Hesperetin relaxing mechanism was investigated using a LTCC opener (BayK8644) and blockers of cyclic nucleotides and phosphodiesterases (PDEs). Whole-cell patch-clamping in A7r5 cells, a rat vascular smooth muscle cell line, was performed to study the effect of hesperetin on LTCC current.
RESULTS:
After depolarizing precontraction, hesperetin induced HUV relaxation concentration-dependently and endothelium-independently; 1 mmol/L hesperetin reduced denuded HUV ring tension by 68.7% ± 4.3% compared to matching vehicle, osmolality, and time controls (P<0.0001). Importantly, hesperetin competitively inhibited BayK8644-induced contraction, shifting the half maximal effective concentration of BayK8644 response from 1.08 nmol/L [95% confidence interval (CI) 0.49-2.40] in vehicle control to 11.30 nmol/L (95% CI 5.45-23.41) in hesperetin (P=0.0001). Moreover, hesperetin elicited further vasorelaxation in denuded HUV rings pretreated with inhibitors of soluble guanylyl cyclase, adenylyl cyclase, PDE3, PDE4, and PDE5 (P<0.01), while rings pretreated with PDE1 inhibitors could not be relaxed by hesperetin (P>0.05). However, simultaneously applying inhibitors of soluble guanylyl cyclase and adenylyl cyclase could not inhibit hesperetin's effect (P>0.05). In whole-cell patch-clamping, hesperetin rapidly decreased LTCC current in A7r5 cells to 66.7% ± 5.8% (P=0.0104).
CONCLUSIONS
Hesperetin diminishes depolarizing contraction of human vascular smooth muscle through inhibition of LTCC, and not cyclic nucleotides nor PDEs. Our evidence supports direct LTCC interaction and provides additional basis for the use of hesperetin and its precursor hesperidin as vasodilators and may lead to future vasodilator drug development as a treatment alternative for cardiovascular diseases.
Hesperidin/pharmacology*
;
Humans
;
Calcium Channels, L-Type/metabolism*
;
Umbilical Veins/physiology*
;
Muscle Contraction/drug effects*
;
Animals
;
Rats
;
Calcium Channel Blockers/pharmacology*
;
Vasodilation/drug effects*
;
Muscle Relaxation/drug effects*
3.Quercetin ameliorates myocardial injury in diabetic rats by regulating L-type calcium channels.
Hongyan SUN ; Guoqing LU ; Chengwen FU ; Mengwen XU ; Xiaoyi ZHU ; Guoquan XING ; Leqiang LIU ; Yufei KE ; Lemei CUI ; Ruiyang CHEN ; Lei WANG ; Pinfang KANG ; Bi TANG
Journal of Southern Medical University 2025;45(3):531-541
OBJECTIVES:
To investigate the effects of quercetin on cuproptosis and L-type calcium currents in the myocardium of diabetic rats.
METHODS:
Forty SD rats were randomized into control group and diabetic model groups. The rat models of diabetes mellitus (DM) induced by high-fat and high-sugar diet combined with streptozotocin (STZ) injection were further divided into DM model group, quercetin treatment group, and empagliflozin treatment group (n=10). Blood glucose and body weight were measured every other week, and cardiac function of the rats was evaluated using echocardiography. HE staining, Sirius red staining, and wheat germ agglutinin (WGA) analysis were used to observe the changes in myocardial histomorphology, and serum copper levels and myocardial FDX1 expression were detected. In cultured rat cardiomyocyte H9c2 cells with high-glucose exposure, the effects of quercetin and elesclomol, alone or in combination, on intracellular CK-MB and LDH levels and FDX1 expression were assessed, and the changes in L-type calcium currents were analyzed using patch-clamp technique.
RESULTS:
The diabetic rats exhibited elevated blood glucose, reduced body weight, impaired left ventricular function, increased serum copper levels and myocardial FDX1 expression, decreased L-type calcium currents, and prolonged action potential duration. Quercetin and empagliflozin treatment significantly lowered blood glucose, improved body weight, and restored cardiac function of the diabetic rats, and compared with empagliflozin, quercetin more effectively reduced serum copper levels, downregulated FDX1 expression, and enhanced myocardial L-type calcium currents in diabetic rats. In H9c2 cells, high glucose exposure significantly increased myocardial expressions of FDX1, CK-MB and LDH, which were effectively lowered by quercetin treatment; Elesclomol further elevated FDX1, CK-MB and LDH levels in the exposed cells, and these changes were not significantly affected by the application of quercetin.
CONCLUSIONS
Quercetin ameliorates myocardial injury in diabetic rats possibly by suppressing myocardial cuproptosis signaling and restoring L-type calcium channel activity.
Animals
;
Quercetin/pharmacology*
;
Calcium Channels, L-Type/metabolism*
;
Diabetes Mellitus, Experimental/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Myocytes, Cardiac/drug effects*
;
Myocardium/pathology*
;
Male
4.Ethacrynic acid inhibits airway smooth muscle contraction in mice.
Xiao-Xue ZHAO ; Wei-Wei CHEN ; Yuan-Yuan CHEN ; Meng-Su LIU ; Meng-Yue LI ; Lei CAO ; Qing-Hua LIU
Acta Physiologica Sinica 2019;71(6):863-873
The aim of this study was to investigate the inhibitory effect and the underlying mechanism of ethacrynic acid (EA) on the contraction in mice. BL-420S force measuring system was used to measure the tension of mouse tracheal rings. The whole cell patch clamp technique was utilized to record the channel currents of airway smooth muscle (ASM) cells. The calcium imaging system was used to determine the intracellular Ca concentration ([Ca]) in ASM cells. The results showed that EA significantly inhibited the high K (80 mmol/L) and acetylcholine (ACh, 100 µmol/L)-induced contraction of mouse tracheal rings in a dose-dependent manner. The maximal relaxation percentages were (97.02 ± 1.56)% and (85.21 ± 0.03)%, and the median effective concentrations were (40.28 ± 2.20) μmol/L and (56.22 ± 7.62) μmol/L, respectively. EA decreased the K and ACh-induced elevation of [Ca] from 0.40 ± 0.04 to 0.16 ± 0.01 and from 0.50 ± 0.01 to 0.39 ± 0.01, respectively. In addition, EA inhibited L-type voltage-dependent calcium channel (LVDCC) and store-operated calcium channel (SOCC) currents in ASM cells, and Ca influx. Moreover, EA decreased the resistance of the respiratory system (Rrs) in vivo in mice. These results indicated that EA inhibits LVDCC and SOCC, which results in termination of Ca influx and decreases of [Ca], leading to relaxation of ASM. Taken together, EA might be a potential bronchodilator.
Animals
;
Calcium
;
metabolism
;
Calcium Channels, L-Type
;
Enzyme Inhibitors
;
pharmacology
;
Ethacrynic Acid
;
pharmacology
;
Mice
;
Muscle Contraction
;
drug effects
;
Muscle, Smooth
;
drug effects
;
Respiratory System
;
cytology
;
drug effects
5.IL-6 inhibits colonic longitudinal muscle contraction by inactivating L-type calcium channel in rats with pancreatitis.
Ya TANG ; Shi-Wei LIANG ; Xiao-Jing QUAN ; He-Sheng LUO ; Ying LIU
Acta Physiologica Sinica 2019;71(5):717-724
The aim of this study was to investigate the effect of interleukin 6 (IL-6) on the contraction of colon longitudinal muscle strips in rats with acute pancreatitis (AP) and its underlying mechanism. Rat AP model was established by combined injection (i. p.) of ceruletide and lipopolysaccharide. The effect of IL-6 on spontaneous contraction of longitudinal smooth muscle strips of rat colon was observed by biological function experiment system. The level of serum IL-6 was detected by ELISA, the expression and distribution of IL-6 in colon were observed by histochemical staining, and the effect of IL-6 on L-type calcium channel in colon smooth muscle cells was observed by whole cell patch clamp technique. The results showed that, compared with the control group, AP group exhibited reduced contractile amplitude and longer contraction cycle of colon smooth muscle strips. IL-6 prolonged the contraction cycle of colon smooth muscle strips, but did not affect their spontaneous contraction amplitude. Serum IL-6 concentration in AP group was significantly higher than that in control group (P > 0.05). IL-6 was diffusely distributed in the colon of the control group, but the expression of IL-6 was significantly up-regulated in the colon gland, mucosa and submucosa of the AP group. IL-6 significantly decreased the peak current density of L-type calcium channel in rat colon smooth muscle cells. These results suggest that the colon motility of AP rats is weakened, and the mechanism may be that up-regulated IL-6 inactivates L-type voltage-dependent calcium channels, and then inhibits the contraction of colon longitudinal smooth muscle.
Animals
;
Calcium Channels, L-Type
;
metabolism
;
Colon
;
Interleukin-6
;
metabolism
;
Muscle Contraction
;
Muscle, Smooth
;
physiopathology
;
Pancreatitis
;
physiopathology
;
Rats
6.Calcium Receptor and Nitric Oxide Synthase Expression in Circular Muscle of Lower Esophagus from Patients with Achalasia.
Yang GAO ; Jun-Feng LIU ; Xin HE ; Xin-Bo LIU ; Ling-Ling ZHANG ; Lian-Mei ZHAO ; Chao ZHANG
Chinese Medical Journal 2018;131(23):2882-2885
Calcium Channels, L-Type
;
genetics
;
metabolism
;
Esophageal Achalasia
;
genetics
;
metabolism
;
Esophagus
;
metabolism
;
Humans
;
Nitric Oxide Synthase
;
metabolism
;
Nitric Oxide Synthase Type I
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptors, Calcium-Sensing
;
genetics
;
metabolism
7.Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.
Weiyun HUANG ; Minhao LIU ; S Frank YAN ; Nieng YAN
Protein & Cell 2017;8(6):401-438
Voltage-gated sodium (Na) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na channels, with Na1.1 and Na1.5 each harboring more than 400 mutations. Na channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca) channel Ca1.1 provides a template for homology-based structural modeling of the evolutionarily related Na channels. In this Resource article, we summarized all the reported disease-related mutations in human Na channels, generated a homologous model of human Na1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na channels, the analysis presented here serves as the base framework for mechanistic investigation of Na channelopathies and for potential structure-based drug discovery.
Animals
;
Calcium Channels, L-Type
;
chemistry
;
genetics
;
metabolism
;
Channelopathies
;
genetics
;
metabolism
;
Humans
;
Mutation
;
NAV1.1 Voltage-Gated Sodium Channel
;
chemistry
;
genetics
;
metabolism
;
NAV1.5 Voltage-Gated Sodium Channel
;
chemistry
;
genetics
;
metabolism
;
NAV1.7 Voltage-Gated Sodium Channel
;
chemistry
;
genetics
;
metabolism
;
Protein Domains
;
Rabbits
;
Structure-Activity Relationship
8.Discovering L-type calcium channels inhibitors of antihypertensive drugs based on drug repositioning.
Ying-xi LIANG ; Yu-su HE ; Lu-di JIANG ; Qiao-xin YUE ; Shuai CUI ; Li BIN ; Xiao-tong YE ; Xiao-hua ZHANG ; Yang-ling ZHANG
China Journal of Chinese Materia Medica 2015;40(18):3650-3654
This study was amid to construct the pharmacophore model of L-type calcium channel antagonist in the application of screening Drugbank and TCMD. This paper repositions the approved drugs resulting from virtual screening and discusses the relocation-based drug discovery methods, screening antihypertensive drugs with L-type calcium channel function from TCMD. Qualitative hypotheses wre generated by HipHop separately on the basis of 12 compounds with antagonistic action on L-type calcium channel expressed in rabbit cardiac muscle. Datebase searching method was used to evaluate the generated hypotheses. The optimum hypothesis was used to search Drugbank and TCMD. This paper repositions the approved drugs and evaluates the antihypertensive effect of the chemical constituent of traditional Chinese medicine resulting from virtual screening by the matching score and literature. The results showed that optimum qualitative hypothesis is with six features, which were two hydrogen-bond acceptors, four hydrophobic groups, and the CAI value of 2.78. Screening Drugbank achieves 93 approved drugs. Screening TCMD achieves 285 chemical constituents of traditional Chinese medicine. It was concluded that the hypothesis is reliable and can be used to screen datebase. The approved drugs resulting from virtual screening, such as pravastatin, are potentially L-type calcium channels inhibitors. The chemical constituents of traditional Chinese medicine, such as Arctigenin III and Arctigenin are potentially antihypertensive drugs. It indicates that Drug Repositioning based on hypothesis is possible.
Animals
;
Antihypertensive Agents
;
chemistry
;
pharmacology
;
Calcium Channel Blockers
;
chemistry
;
pharmacology
;
Calcium Channels, L-Type
;
genetics
;
metabolism
;
Drug Repositioning
;
methods
;
Molecular Structure
;
Myocardium
;
metabolism
;
Rabbits
9.Gentamicin on inner hair cells ribbon synapses CaV1.3 calcium ion channel protein expression.
Jianhua SUN ; Xuefeng WANG ; Ke LIU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(4):261-264
OBJECTIVE:
To learn the influence the gentamycin on C57BL/6J mice hear and cochlear hair cell ribbon synapses CaV1.3 calcium protein amount. To explore the relationship between hear loss and its dosage correlation change and significance.
METHOD:
The fixed amino glucoside to C57BL/6J mice was used to make abdominal cavity injection mold every day. The auditory brain-stem response ABR was used to measure the hear of mice in 7th, 14th, 28th after the injection. Immunofluorescence method was used to observe cochlear basement membrane of hair ribbon synapse CaV1.3 calcium channel proteins in the distribution and expression. Inner hair cells synaptic membrane was immune fluorescent tags with CtbP2 and CaV1. 3.
RESULT:
With the growth of the injected drugs, ABR threshold increased,but all the hair cells and shape had no obvious change. However the amount of hair rib bon synapse CaV1.3 calcium ion channel proteins in the expression had significant differences (P < 0.01). CaV1.3 calcium ion channel proteins increased slightly lower than normal at 7th day, significantly decreased at 14th day, had increased, increased quantity compare with 14th day, but at 28th day after intraperitoneal injection of gentamicin.
CONCLUSION
The increasing,decreasing and increasing trend of cochlear hair cells CaV1.3 proteins in the environment of amino glucoside drug toxicity showed that the increase of hair ribbon synapse CaV1.3 proteins may have a compensatory effect on the drug toxicity. With the increase of the drug toxicity effect, this kind of decompensated function could be the listening decline, which may be one of the mechanism of damage to hearing.
Animals
;
Calcium Channels, L-Type
;
metabolism
;
Evoked Potentials, Auditory, Brain Stem
;
Gentamicins
;
pharmacology
;
Hair Cells, Auditory, Inner
;
drug effects
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Proteomics
10.The functional changes in L-type Ca2+ channel of hypertrophied cardiomyocytes in neonatal rats induced by angiotensin II.
Qiu-Li YAN ; Wei HUA ; Liang-Zhu YU
Chinese Journal of Applied Physiology 2013;29(1):91-95
OBJECTIVETo investigate the molecular and functional changes in L-type Ca2+ channel of hypertrophied cardiomyocytes in neonatal rats induced by angiotensin II (Ang II).
METHODSThe in vitro model of cardiomyocyte hypertrophy was established in cultured cardiomyocytes from neonatal rats. Whole cell patch clamp was used to measure the L-type Ca2+ currents. Semi-quantitative RT-PCR was used to determine the mRNA expression of L-type Ca2+ channel alpha1C subunits.
RESULTSIn the hypertrophied cardiomyocytes induced by Ang II, I(Ca, L) densities were increased, whereas the features of I(Ca,L) activation, inactivation or recovery from inactivation were not affected. Meanwhile, Ang II increased the mRNA expression of L-type Ca2+ channel alpha1C subunits in cardiomyocytes. All these actions of Ang II could be blocked by the angiotensin II 1 type receptor blocker losartan.
CONCLUSIONDuring cardiomyocyte hypertrophy induced by Ang II, there are significant changes in the molecule and function of L-type Ca2+ channels, which are mediated by the angiotensin II 1 type receptor.
Angiotensin II ; adverse effects ; Animals ; Calcium ; metabolism ; Calcium Channels, L-Type ; metabolism ; Female ; Hypertrophy ; metabolism ; Male ; Membrane Potentials ; Myocytes, Cardiac ; metabolism ; pathology ; physiology ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail