1.Effect of Erxian Decoction-containing serum on H_2O_2-induced proliferation and osteogenic differentiation of MC3T3-E1 cells via BK channels.
Ming-Shi REN ; Yu DING ; Zi-Han LI ; Yu-Meng WU ; Si-Min HUANG ; Lan-Lan LUO ; Yu-Jing ZHANG ; Min SHI ; Xun-Li XIA ; Bo LIU
China Journal of Chinese Materia Medica 2023;48(9):2522-2529
This study aimed to investigate the effects of Erxian Decoction(EXD)-containing serum on the proliferation and osteogenic differentiation of MC3T3-E1 cells under oxidative stress through BK channels. The oxidative stress model was induced in MC3T3-E1 cells by H_2O_2, and 3 mmol·L~(-1) tetraethylammonium(TEA) chloride was used to block the BK channels in MC3T3-E1 cells. MC3T3-E1 cells were divided into a control group, a model group, an EXD group, a TEA group, and a TEA+EXD group. After MC3T3-E1 cells were treated with corresponding drugs for 2 days, 700 μmol·L~(-1) H_2O_2 was added for treatment for another 2 hours. CCK-8 assay was used to detect cell proliferation activity. The alkaline phosphatase(ALP) assay kit was used to detect the ALP activity of cells. Western blot and real-time fluorescence-based quantitative PCR(RT-qPCR) were used to detect protein and mRNA expression, respectively. Alizarin red staining was used to detect the mineralization area of osteoblasts. The results showed that compared with the control group, the model group showed significantly blunted cell proliferation activity and ALP activity, reduced expression of BK channel α subunit(BKα), collagen Ⅰ(COL1), bone morphogenetic protein 2(BMP2), osteoprotegerin(OPG), and phosphorylated Akt, decreased mRNA expression levels of Runt-related transcription factor 2(RUNX2), BMP2, and OPG, and declining area of calcium nodules. EXD-containing serum could significantly potentiate the cell proliferation activity and ALP activity, up-regulate the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt, and forkhead box protein O1(FoxO1), promote the mRNA expression of RUNX2, BMP2, and OPG, and enlarge the area of calcium nodules. However, BK channel blockage by TEA reversed the effects of EXD-containing serum in promoting the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt and FoxO1, increasing the mRNA expression of RUNX2, BMP2, and OPG, and enlarging the area of calcium nodules. EXD-containing serum could improve the proliferation activity, osteogenic differentiation, and mineralization ability of MC3T3-E1 cells under oxidative stress, which might be related to the regulation of BK channels and downstream Akt/FoxO1 signaling pathway.
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
Large-Conductance Calcium-Activated Potassium Channels/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Calcium/metabolism*
;
Cell Differentiation
;
RNA, Messenger/metabolism*
;
Cell Proliferation
;
Osteoblasts
2.Adjuvant rice optimization of rice-steamed Rehmanniae Radix and its anti-osteoporosis effect.
Hong-Yu YANG ; Ying ZHANG ; Meng-Xi WU ; Hui ZHU ; Hong-Mei LI ; Lu-Qi HUANG ; Hui TIAN ; Yuan YUAN
China Journal of Chinese Materia Medica 2023;48(10):2749-2756
The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.
Female
;
Rats
;
Animals
;
Oryza
;
Chromatography, Liquid
;
Calcium
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Osteoporosis/drug therapy*
;
Rehmannia
;
Adjuvants, Pharmaceutic
3.Antibacterial effect of low-temperature plasma on Enterococcus faecalis in dentinal tubules in vitro.
Ruo Qing ZHONG ; Meng Qian ZHU ; Ying Long LI ; Ji PAN
Journal of Peking University(Health Sciences) 2023;55(1):38-43
OBJECTIVE:
To construct a model of Enterococcus faecalis (E. faecalis) infection in dentinal tubules by gradient centrifugation and to evaluate the antibacterial effect of low-temperature plasma on E. faecalis in dentinal tubules.
METHODS:
Standard dentin blocks of 4 mm×4 mm×2 mm size were prepared from single root canal isolated teeth without caries, placed in the E. faecalis bacterial solution, centrifuged in gradient and incubated for 24 h to establish the model of dentinal tubule infection with E. faecalis. The twenty dentin blocks of were divided into five groups, low-temperature plasma jet treatment for 0, 5 and 10 min, calcium hydroxide paste sealing for 7 d and 2% chlorhexidine gel sealing for 7 d. Scanning electron microscopy and confocal laser scanning microscope were used to assess the infection in the dentinal tubules and the antibacterial effect of low-temperature plasma.
RESULTS:
The results of scanning electron microscopy and confocal laser scanning microscopy showed that after 24 h of incubation by gradient centrifugation, E. faecalis could fully enter the dentinal tubules to a depth of more than 600μm indicating that this method was time-saving and efficient and could successfully construct a model of E. faecalis infection in dentinal tubules. Low-temperature plasma could enter the dentinal tubules and play a role, the structure of E. faecalis was still intact after 5 min of low-temperature plasma treatment, with no obvious damage, and after 10 min of low-temperature plasma treatment, the surface morphology of E. faecalis was crumpled and deformed, the cell wall was seriously collapsed, and the normal physiological morphology was damaged indicating that the majority of E. faecalis was killed in the dentinal tubules. The antibacterial effect of low-temperature plasma treatment for 10 min exceeded that of the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d. These two chemicals had difficulty entering deep into the dentinal tubules, and therefore only had a few of antibacterial effect on the bacterial biofilm on the root canal wall, and there was also no significant damage to the E. faecalis bacterial structure.
CONCLUSION
Gradient centrifugation could establish the model of E. faecalis dentin infection successfully. Low-temperature plasma treatment for 10 min could kill E. faecalis in dentinal tubules effectively, which is superior to the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d.
Chlorhexidine/pharmacology*
;
Calcium Hydroxide/pharmacology*
;
Enterococcus faecalis/physiology*
;
Temperature
;
Dentin
;
Biofilms
;
Anti-Bacterial Agents/pharmacology*
;
Root Canal Irrigants/pharmacology*
;
Dental Pulp Cavity
4.Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation.
Katesirin RUAMYOD ; Wattana B WATANAPA ; Chanrit KAKHAI ; Pimchanok NAMBUNDIT ; Sukrit TREEWAREE ; Parin WONGSANUPA
Journal of Integrative Medicine 2023;21(1):99-105
OBJECTIVE:
To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.
METHODS:
We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.
RESULTS:
Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.
CONCLUSION
This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Rats
;
Animals
;
Insulin Secretion
;
Insulin/pharmacology*
;
Insulin-Secreting Cells/metabolism*
;
Coumaric Acids/metabolism*
;
Calcium/metabolism*
5.Mechanism of essential oil from Schizonepeta tenuifolia in treatment of depression based on network pharmacology and experimental verification.
Tian-Tian QIN ; Hong-Xiao XIE ; Jing-Wen HU ; Jiu-Seng ZENG ; Rong LIU ; Nan ZENG
China Journal of Chinese Materia Medica 2023;48(4):1066-1075
This paper aimed to explore the antidepressant effect of the essential oil from Schizonepeta tenuifolia Briq.(EOST) on the treatment of depression and its mechanism by using a combination of network pharmacology and the mouse model of lipopolysaccharide(LPS)-induced depression. The chemical components in EOST were identified using gas chromatography-mass spectrometer(GC-MS), and 12 active components were selected as the study objects. The targets related to EOST were obtained by Traditional Chinese Medicines Systems Pharmacology(TCMSP) and SwissTargetPrediction database. The targets related to depression were screened out through GeneCards, Therapeutic Target Database(TTD), and Online Mendelian Inheritance in Man(OMIM) database. The Venny 2.1 was applied to screen out the common targets of EOST and depression. The targets were imported into Cytoscape 3.7.2 to generate "drug-active component-diease-target" network diagram. The protein-protein interaction(PPI) network was constructed using STRING 11.5 database and Cytoscape 3.7.2, and the core targets were screened out. DAVID 6.8 database was used for Gene Ontology(GO) func-tional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and subsequently the enrichment results were visualized through the bioinformatics platform. The mouse model of depression was induced by intraperitoneally injecting with LPS in mice. Before modeling, mice were administrated orally with EOST. The antidepressant effect of EOST was evalua-ted by tail suspension test(TST), forced swimming test(FST), and novelty suppressed feeding test(NSFT) after modeling. The content of interleukin(IL)-1β was determined by enzyme-linked immunosorbent assay(ELISA), and the protein expression levels of IL-1β and pro IL-1β in the hippocampus were determined by Western blot. There were 12 main components and 179 targets in EOAT, of which, 116 targets were related to depression, mainly involved in neuroactive ligand-receptor interaction, calcium signaling pathway, and cyclic adenosine monophosphate(cAMP) signaling pathway. Biological processes such as synaptic signal transduction, G-protein coupled receptor signaling pathway, and chemical synaptic transmission were involved. Molecular functions such as neurotransmitter receptor activity, RNA polymerase Ⅱ transcription factor activity, and heme binding were involved. In mice experiments, the results showed that EOST at 100 mg·kg~(-1) and 50 mg·kg~(-1) significantly shortened the immobility time in TST and FST as well as the feeding latency in NSFT compared with the model group, decreased the levels of serum IL-1β and NO, and reduced the protein expression levels of IL-1β and pro IL-1β in the hippocampus. In conclusion, EOST shows a good antidepressant effect in a multi-component, multi-target, and multi-pathway manner. The mechanism may be attributed to the fact that EOST can down-regulate the protein expression levels of IL-1β and pro IL-1β, decrease the release of inflammatory factors, and reduce neuroinflammation response.
Animals
;
Mice
;
Oils, Volatile
;
Depression
;
Lipopolysaccharides
;
Network Pharmacology
;
Databases, Genetic
;
Calcium Signaling
;
Disease Models, Animal
6.Mechanism of n-butanol alcohol extract of Baitouweng Decoction in treatment of vulvovaginal candidiasis based on negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis.
Kai-Fan HU ; Ling MO ; Hao ZHANG ; Dan XIA ; Gao-Xiang SHI ; Da-Qiang WU ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2023;48(6):1578-1588
This study aimed to explore the mechanism of n-butanol alcohol extract of Baitouweng Decoction(BAEB) in the treatment of vulvovaginal candidiasis(VVC) in mice based on the negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis. In the experiment, female C57BL/6 mice were divided randomly into the following six groups: a blank control group, a VVC model group, high-, medium-, and low-dose BAEB groups(80, 40, and 20 mg·kg~(-1)), and a fluconazole group(20 mg·kg~(-1)). The VVC model was induced in mice except for those in the blank control group by the estrogen dependence method. After modeling, no treatment was carried out in the blank control group. The mice in the high-, medium-, and low-dose BAEB groups were treated with BAEB at 80, 40, and 20 mg·kg~(-1), respectively, and those in the fluconazole group were treated with fluconazole at 20 mg·kg~(-1). The mice in the VVC model group received the same volume of normal saline. The general state and body weight of mice in each group were observed every day, and the morphological changes of Candida albicans in the vaginal lavage of mice were examined by Gram staining. The fungal load in the vaginal lavage of mice was detected by microdilution assay. After the mice were killed, the degree of neutrophil infiltration in the vaginal lavage was detected by Papanicolaou staining. The content of inflammatory cytokines interleukin(IL)-1β, IL-18, and lactate dehydrogenase(LDH) in the vaginal lavage was tested by enzyme-linked immunosorbent assay(ELISA), and vaginal histopathology was analyzed by hematoxylin-eosin(HE) staining. The expression and distribution of NLRP3, PKCδ, pNLRC4, and IL-1Ra in vaginal tissues were measured by immunohistochemistry(IHC), and the expression and distribution of pNLRC4 and IL-1Ra in vaginal tissues were detected by immunofluorescence(IF). The protein expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by Western blot(WB), and the mRNA expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by qRT-PCR. The results showed that compared with the blank control group, the VVC model group showed redness, edema, and white secretions in the vagina. Compared with the VVC model group, the BAEB groups showed improved general state of VVC mice. As revealed by Gram staining, Papanicolaou staining, microdilution assay, and HE staining, compared with the blank control group, the VVC model group showed a large number of hyphae, neutrophils infiltration, and increased fungal load in the vaginal lavage, destroyed vaginal mucosa, and infiltration of a large number of inflammatory cells. BAEB could reduce the transformation of C. albicans from yeast to hyphae. High-dose BAEB could significantly reduce neutrophil infiltration and fungal load. Low-and medium-dose BAEB could reduce the da-mage to the vaginal tissue, while high-dose BAEB could restore the damaged vaginal tissues to normal levels. ELISA results showed that the content of inflammatory cytokines IL-1β, IL-18, and LDH in the VVC model group significantly increased compared with that in the blank control group, and the content of IL-1β, IL-18 and LDH in the medium-and high-dose BAEB groups was significantly reduced compared with that in the VVC model group. WB and qRT-PCR results showed that compared with the blank control group, the VVC model group showed reduced protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues of mice and increased protein and mRNA expression of NLRP3. Compared with the VVC model group, the medium-and high-dose BAEB groups showed up-regulated protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues and inhibited protein and mRNA expression of NLRP3 in vaginal tissues. This study indicated that the therapeutic effect of BAEB on VVC mice was presumably related to the negative regulation of NLRP3 inflammasome by promoting PKCδ/NLRC4/IL-1Ra axis.
Female
;
Animals
;
Humans
;
Mice
;
Candidiasis, Vulvovaginal/drug therapy*
;
Inflammasomes/genetics*
;
Interleukin-18
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
1-Butanol/pharmacology*
;
Fluconazole/therapeutic use*
;
Interleukin 1 Receptor Antagonist Protein/therapeutic use*
;
Mice, Inbred C57BL
;
Candida albicans
;
Cytokines
;
Drugs, Chinese Herbal/pharmacology*
;
Ethanol
;
RNA, Messenger
;
Calcium-Binding Proteins/therapeutic use*
7.Mechanism of Gegen Qinlian Decoction in improving glucose metabolism in vitro and in vivo by alleviating hepatic endoplasmic reticulum stress.
Yue JIANG ; Li-Ke YAN ; Ying WANG ; Jun-Feng DING ; Zhong-Hua XU ; Can CUI ; Jun TU
China Journal of Chinese Materia Medica 2023;48(20):5565-5575
This study investigated the mechanism of Gegen Qinlian Decoction(GQD) in improving glucose metabolism in vitro and in vivo by alleviating endoplasmic reticulum stress(ERS). Molecular docking was used to predict the binding affinity between the main effective plasma components of GQD and ERS-related targets. Liver tissue samples were obtained from normal rats, high-fat-induced diabetic rats, rats treated with metformin, and rats treated with GQD. RNA and protein were extracted. qPCR was used to measure the mRNA expression of ERS marker glucose-regulated protein 78(GRP78), and unfolded protein response(UPR) genes inositol requiring enzyme 1(Ire1), activating transcription factor 6(Atf6), Atf4, C/EBP-homologous protein(Chop), and caspase-12. Western blot was used to detect the protein expression of GRP78, IRE1, protein kinase R-like ER kinase(PERK), ATF6, X-box binding protein 1(XBP1), ATF4, CHOP, caspase-12, caspase-9, and caspase-3. The calcium ion content in liver tissues was determined by the colorimetric assay. The ERS-HepG2 cell model was established in vitro by inducing with tunicamycin for 6 hours, and 2.5%, 5%, and 10% GQD-containing serum were administered for 9 hours. The glucose oxidase method was used to measure extracellular glucose levels, flow cytometry to detect cell apoptosis, glycogen staining to measure cellular glycogen content, and immunofluorescence to detect the expression of GRP78. The intracellular calcium ion content was measured by the colorimetric assay. Whereas Western blot was used to detect GRP78 and ERS-induced IRE1, PERK, ATF6, and eukaryotic translation initiation factor 2α(eIF2α) phosphorylation. Additionally, the phosphorylation levels of insulin receptor substrate 1(IRS1), phosphatidylinositol 3-kinase regulatory subunit p85(PI3Kp85), and protein kinase B(Akt), which were involved in the insulin signaling pathway, were also measured. In addition, the phosphorylation levels of c-Jun N-terminal kinases(JNKs), which were involved in both the ERS and insulin signaling pathways, were measured by Western blot. Molecular docking results showed that GRP78, IRE1, PERK, ATF4, and various compounds such as baicalein, berberine, daidzein, jateorhizine, liquiritin, palmatine, puerarin and wogonoside had strong binding affinities, indicating that GQD might interfere with ERS-induced UPR. In vivo results showed that GQD down-regulated the mRNA transcription of Ire1, Atf6, Atf4, Grp78, caspase-12, and Chop in diabetic rats, and down-regulated GRP78, IRE1, PERK, as well as ERS-induced apoptotic factors ATF4 and CHOP, caspase-12, caspase-9, and caspase-3, while up-regulating XBP1 to enhance adaptive UPR. In addition, GQD increased the calcium ion content in liver tissues, which facilitated correct protein folding. In vitro results showed that GQD increased glucose consumption in ERS-induced HepG2 cells without significantly affecting cell viability, increased liver glycogen synthesis, down-regulated ATF6 and p-eIF2α(Ser51), and down-regulated IRE1, PERK, and GRP78, as well as p-IRS1(Ser312) and p-JNKs(Thr183/Tyr185), while up-regulating p-PI3Kp85(Tyr607) and p-Akt(Ser473). These findings suggested that GQD alleviates excessive ERS in the liver, reduces insulin resistance, and improves hepatic glucose metabolism in vivo and in vitro.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt
;
Endoplasmic Reticulum Chaperone BiP
;
Caspase 3
;
Caspase 9
;
Diabetes Mellitus, Experimental
;
Caspase 12
;
Calcium/pharmacology*
;
Molecular Docking Simulation
;
Endoplasmic Reticulum Stress
;
Protein Serine-Threonine Kinases/genetics*
;
Liver
;
Apoptosis
;
Insulin
;
Glucose
;
Glycogen/pharmacology*
;
RNA, Messenger
8.Mechanism of atractylenolide Ⅲ in alleviating H9c2 cell apoptosis through ROS/GRP78/caspase-12 signaling pathway based on molecular docking.
Meng-Yu ZUO ; Tong-Juan TANG ; Peng ZHOU ; Xiang WANG ; Rui DING ; Jin-Fan GU ; Jian CHEN ; Liang WANG ; Juan YAO ; Xiang-Yang LI ; Jin-Ling HUANG
China Journal of Chinese Materia Medica 2022;47(16):4436-4445
This study aims to investigate the effect of atractylenolide Ⅲ(ATL-Ⅲ) on hydrogen peroxide(H_2O_2)-induced endoplasmic reticulum stress and apoptosis of H9 c2 cells via the ROS/GRP78/caspase-12 signaling pathway.The binding activity of ATL-Ⅲ to GRP78 was determined by molecular docking.The result showed that ATL-Ⅲ had a good binding activity to GRP78, and the binding activity of ATL-Ⅲ was stronger than that of its specific inhibitor.The endoplasmic reticulum stress model of H9 c2 was established by H_2O_2(100 μmol·L~(-1)) treatment.Five groups were designed: blank control group, model group, and ATL-Ⅲ(15, 30, and 60 μmol·L~(-1)) groups.Apoptosis was detected by Hoechst/PI double staining and flow cytometry.The levels of superoxide dismutase(SOD), malondialdehyde(MDA), and lactate dehydrogenase(LDH) were measured by colorimetry.The levels of reactive oxygen species(ROS) and calcium(Ca~(2+)) in cytoplasm were determined by the fluorescence probe DCFH-DA and the calcium fluorescence probe Flou-4, respectively.The protein levels of GRP78, caspase-12, and caspase-3 were determined by Western blot, and the mRNA levels of GRP78 and caspase-12 by RT-qPCR.N-acetyl-L-cysteine(NAC) and 4-phenylbutyric acid(4-PBA) were respectively used to inhibit ROS and GRP78, and then the mechanism of ATL-Ⅲ in protecting the cells from endoplasmic reticulum stress induced by H_2O_2 were deduced.ATL-Ⅲ(15, 30, and 60 μmol·L~(-1)) decreased the apoptosis rate and ROS, MDA, and LDH levels(P<0.01), increased the SOD activity(P<0.01), and down-regulated the protein levels of GRP78, caspase-12, and caspase-3 and the mRNA levels of GRP78 and caspase-12(P<0.05).The addition of NAC decreased the apoptosis rate and ROS, MDA, GRP78, caspase-12, and caspase-3 levels(P<0.01), while it elevated the SOD level(P<0.01).The addition of 4-PBA also decreased the apoptosis rate and the levels of GRP78, caspase-12, caspase-3, and Ca~(2+)(P<0.01).The effect of inhibitors were consistent with that of ATL-Ⅲ.In conclusion, ATL-Ⅲ can protect H9 c2 cardiomyocytes by regulating ROS/GRP78/caspase-12 signaling pathway to inhibit H_2O_2-induced endoplasmic reticulum stress and apoptosis.
Apoptosis
;
Calcium/pharmacology*
;
Caspase 12/metabolism*
;
Caspase 3/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Endoplasmic Reticulum Stress
;
Lactones
;
Molecular Docking Simulation
;
RNA, Messenger
;
Reactive Oxygen Species/metabolism*
;
Sesquiterpenes
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
9.Effect and mechanism of thymosin beta 4 on spinal cord-derived neural stem /progenitor cell injury induced by oxidative stress.
China Journal of Orthopaedics and Traumatology 2022;35(8):763-771
OBJECTIVE:
To investigate the role and mechanism of thymosin beta 4 (Tβ4) in oxidative stress injury of spinal cord-derived neural stem/progenitor cells (NSPCs) induced by hydrogen peroxide (H2O2).
METHODS:
NSPCs were isolated from Sprague-Dawley (SD) adult male rats, and divided into control group (untreated NSPCs cells), H2O2 group (NSPCs cells damaged by 500 μM H2O2), Tβ4 -3 groups (NSPCs were treated with 1, 2.5, 5 μg/ml Tβ4 on the basis of H2O2 treatment) and TAK-242 group [NSPCs were treated with 5 μg/ml Tβ4 and Toll-like receptor 4(TLR4) inhibitor TAK-242 on the basis of H2O2 treatment]. NSPCs were transfected with lentivirus vector of myeloid differentiation factor 88(MyD88) to construct MyD88-overexpressing cell lines, which were treated with H2O2 and Tβ4. The expression of Tβ4, TLR4, MyD88 were detected by qRT-PCR and Western blot. Cell viability was detected by MTT assay and lactate dehydrogenase(LDH) assay kit. Ca2+ concentration was detected by Fluo-3/AM probe method. The apoptosis of NSPCs was detected by flow cytometry and Caspase-3 and Caspase-9 kits;reactive oxygen species (ROS), superoxi dedismu-tase dismutase(SOD) activity and glutathione (GSH) content were detected by corresponding kits. Interleukin(IL)-6 and IL-1β were detected by enzyme-linked immunosorbent assay.
RESULTS:
The expression of Tβ4 was decreased in H2O2 injured NSPCs(P<0.05). Compared with H2O2 group, the cell viability and Ca2+ concentration was significantly increased, release of LDH and apoptosis were significantly decreased, production of ROS and pro-inflammatory cytokines were significantly decreased, and the expression levels of TLR4 and MyD88 protein were significantly decreased in Tβ4-3 groups and TAK-242 group (P<0.05). After overexpression of MyD88, cell viability, SOD activity and GSH content of NSPCs decreased, LDH release and apoptosis increased significantly (P<0.05), while after treatment with Tβ4, cell viability, SOD activity and GSH content increased, LDH release and apoptosis decreased (P<0.05).
CONCLUSION
Tβ4 attenuates H2O2-induced NSPCs oxidative stress, apoptosis and inflammation in NSPCs via inhibiting TLR4 and MyD88 pathways.
Animals
;
Apoptosis
;
Calcium/pharmacology*
;
Cell Survival
;
Hydrogen Peroxide/pharmacology*
;
Male
;
Myeloid Differentiation Factor 88/pharmacology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/pharmacology*
;
Spinal Cord Injuries/drug therapy*
;
Stem Cells
;
Superoxide Dismutase/pharmacology*
;
Thymosin/metabolism*
;
Toll-Like Receptor 4/metabolism*
10.Rumex acetosella Inhibits Platelet Function via Impaired MAPK and Phosphoinositide 3-Kinase Signaling.
Bo-Ra JEON ; Muhammad IRFAN ; Seung Eun LEE ; Jeong Hoon LEE ; Man Hee RHEE
Chinese journal of integrative medicine 2022;28(9):802-808
OBJECTIVE:
To examine the antiplatelet and antithrombotic activity of Rumex acetosella extract.
METHODS:
Standard light aggregometry was used for platelet aggregation, intracellular calcium mobilization assessed using Fura-2/AM, granule secretion (ATP release) by luminometer, and fibrinogen binding to integrin αIIbβ3 detected using flow cytometry. Western blotting is carried out to determine the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling.
RESULTS:
Rumex acetosella displayed the ability to inhibit platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αIIbβ3. Rumex acetosella has also down-regulated MAPK and PI3K/Akt phosphorylation (all P<0.01).
CONCLUSION
Rumex acetosella extract exhibits antiplatelet activity via modulating GPVI signaling, and it may protect against the development of platelet-related cardiovascular diseases.
Blood Platelets/metabolism*
;
Calcium/metabolism*
;
Fibrinogen/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
Phosphatidylinositol 3-Kinase/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Phosphorylation
;
Plant Extracts/pharmacology*
;
Platelet Aggregation
;
Platelet Aggregation Inhibitors/pharmacology*
;
Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rumex/metabolism*

Result Analysis
Print
Save
E-mail