1.Role of prohibitin 2 in mitophagy pathway against atherosclerosis in rats undergoing endurance training
Mingxiao SONG ; Junshunzi CHEN ; Ningwei WANG ; Huan CAI ; Hong FENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2294-2300
BACKGROUND:Exercises can reduce blood lipids and slow down the development of atherosclerosis.Atherosclerosis begins with mitochondrial dysfunction,and prohibitin 2 is involved in mitophagy by endurance training. OBJECTIVE:To explore the role of endurance training in the intervention of prohibitin 2 protein in the mitophagy autophagy pathway in atherosclerosis. METHODS:A total of 40 Wistar rats were randomly divided into control group,exercise group,atherosclerosis group and atherosclerosis combined with exercise group,with 10 rats in each group.A rat model of atherosclerosis was constructed by combining a high-fat diet(9 weeks)with vitamin D injections(weeks 1,3,and 6)in the latter two groups,while the two exercise groups were subjected to progressing intensity endurance training for 9 weeks.After the intervention,lipid and pathological detections were conducted to observe the modeling and interventional effects.Mitochondrial membrane potential and mitophagy proteins were detected by microplate reader and western blot.Immunofluorescence staining was used to observe the co-localization of mitophagy proteins in aortic tissue. RESULTS AND CONCLUSION:Lipid and pathological sections showed that compared with the atherosclerosis group,the serum low-density lipoprotein cholesterol and total cholesterol levels and aortic lipid deposition area were significantly reduced in the atherosclerosis combined with exercise group(P<0.001).The results of mitochondrial membrane potential showed that the significant decrease in mitochondrial membrane potential of the aorta in the atherosclerosis combined with exercise group was reversed(P<0.01).The results of western blot assay showed that compared with the control group,the mitochondrial protein expression of prohibitin 2,LC3Ⅱ/Ⅰ,PINK1 and Parkin was significantly increased(P<0.05),and the protein expression of PARL and PGAM5 decreased(P<0.05).Compared with the atherosclerosis group,the protein expression of PINK1 and Parkin in the mitchondria of rats in the atherosclerosis combined with exercise group was significantly decreased(P<0.05),and the protein expressions of prohibitin 2,LC3Ⅱ/Ⅰ,PARL and PGAM5 were significantly increased(P<0.05).Immunofluorescence results showed that compared with the control group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis group(P<0.05),while compared with the atherosclerosis group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis combined with exercise group(P<0.05).Co-localization of LC3 and PARL with prohibitin 2 was significantly increased in the atherosclerosis group compared with the control group(P<0.01),co-localization of LC3 with prohibitin 2 was significantly increased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01),and co-localization of PARL protein with prohibitin 2 was significantly decreased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01).To conclude,endurance training can induce the expression of prohibitin 2 in the inner mitochondrial membrane and promote the binding of prohibitin 2 to the mitophagy junction protein to complete mitophagy,restore mitochondrial function,and slow down the occurrence of atherosclerosis.
2.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
3.Effects of Saccharomyces cerevisiae chassis cells with different squalene content on triterpenoid synthesis.
Feng ZHANG ; Kang-Xin HOU ; Yue ZHANG ; Hong-Ping HOU ; Yue ZHANG ; Chao-Yue LIU ; Xue-Mi HAO ; Jia LIU ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2025;50(8):2130-2136
Many triterpenoid compounds have been successfully heterologously synthesized in Saccharomyces cerevisiae. To increase the yield of triterpenoids, various metabolic engineering strategies have been developed. One commonly applied strategy is to enhance the supply of precursors, which has been widely used by researchers. Squalene, as a precursor to triterpenoid biosynthesis, plays a crucial role in the synthesis of these compounds. This study primarily investigates the effect of different squalene levels in chassis strains on the synthesis of triterpenoids(oleanolic acid and ursolic acid), and the underlying mechanisms are further explored using real-time quantitative PCR(qPCR) analysis. The results demonstrate that the chassis strain CB-9-5, which produces high levels of squalene, inhibits the synthesis of oleanolic acid and ursolic acid. In contrast, chassis strains with moderate to low squalene production, such as Y8-1 and CNPK, are more conducive to the synthesis of oleanolic acid and ursolic acid. The qPCR analysis reveals that the expression levels of ERG1, βAS, and CrCYP716A154 in the oleanolic acid-producing strain CB-OA are significantly lower than those in the control strains C-OA and Y-OA, suggesting that high squalene production in the chassis strains suppresses the transcription of certain genes, leading to a reduced yield of triterpenoids. Our findings indicate that when constructing S. cerevisiae strains for triterpenoid production, chassis strains with high squalene content may suppress the expression of certain genes, ultimately lowering their production, whereas chassis strains with moderate squalene levels are more favorable for triterpenoid biosynthesis.
Squalene/analysis*
;
Saccharomyces cerevisiae/genetics*
;
Triterpenes/metabolism*
;
Metabolic Engineering
;
Oleanolic Acid/biosynthesis*
;
Ursolic Acid
4.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
5.Unilateral biportal endoscopy-assisted decompression strategy for lateral lumbar spinal stenosis.
Xuyang XU ; Zhiqiang ZHANG ; Zijie WANG ; Liang ZHANG ; Jun CAI ; Xinmin FENG ; Yu DING ; Yi ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):612-619
OBJECTIVE:
To explore decompression strategies for lateral lumbar spinal stenosis under unilateral biportal endoscopy (UBE) assistance.
METHODS:
A clinical data of 86 patients with lateral lumbar stenosis treated with UBE-assisted intervertebral decompression between September 2022 and December 2023 was retrospectively analyzed. There were 42 males and 44 females with an average age of 63.6 years (range, 45-79 years). The disease duration ranged from 6 to 14 months (mean, 8.5 months). Surgical levels included L 2, 3 in 3 cases, L 3, 4 in 26 cases, L 4, 5 in 42 cases, and L 5, S 1 in 15 cases. According to Lee's grading system, there were 21 cases of grade 1, 37 cases of grade 2, and 28 cases of grade 3 for lumbar spinal stenosis. Based on the location of stenosis and clinical symptoms, the 33 cases underwent interlaminar approach, 7 cases underwent interlaminar approach with auxiliary third incision, 26 cases underwent contralateral inclinatory approach, and 20 cases underwent paraspinal approach; then, the corresponding decompression procedures were performed. Visual analogue scale (VAS) score was used to evaluate lower back/leg pain before operation and at 1 and 3 months after operation, while Oswestry disability index (ODI) was used to evaluate spinal function. At 3 months after operation, the effectiveness was evaluated using the modified MacNab evaluation criteria. The spinal stenosis and decompression were evaluated based on Lee's grading system using lumbar MRI before operation and at 3 months after operation.
RESULTS:
All procedures were successfully completed with mean operation time of 95.1 minutes (range, 57-166 minutes). Dural tears occurred in 2 cases treated with interlaminar approach with auxiliary third incision. All incisions healed by first intention. All patients were followed up 3-10 months (mean, 5.9 months). The clinical symptoms of the patients relieved to varying degrees. The VAS scores and ODI of lower back and leg pain at 1 and 3 months after operation significantly improved compared to preoperative levels ( P<0.05), and the indicators at 3 months significantly improved than that at 1 month ( P<0.05). According to the modified MacNab evaluation criteria, the effectiveness at 3 months after operation was rated as excellent in 52 cases, good in 21 cases, and poor in 13 cases, with an excellent and good rate of 84.9%. No lumbar instability was detected on flexion-extension X-ray films during follow-up. The Lee's grading of lateral lumbar stenosis at 2 days after operation showed significant improvement compared to preoperative grading ( P<0.05).
CONCLUSION
For lateral lumbar spinal stenosis, UBE-assisted decompression of the spinal canal requires the selection of interlaminar approach, interlaminar approach with auxiliary third incision, contralateral inclinatory approach, and paraspinal approach based on preoperative imaging findings and clinical symptoms to achieve better effectiveness.
Humans
;
Spinal Stenosis/diagnostic imaging*
;
Female
;
Male
;
Middle Aged
;
Decompression, Surgical/methods*
;
Aged
;
Lumbar Vertebrae/surgery*
;
Endoscopy/methods*
;
Retrospective Studies
;
Treatment Outcome
6.Construction and application of oral squamous cell carcinoma organoid bank.
Shang XIE ; Luming WANG ; Xinyuan ZHANG ; Qiushi FENG ; Yangyang XIA ; Ziwei DAI ; Xiaofeng SHAN ; Zhigang CAI
Journal of Peking University(Health Sciences) 2025;57(5):847-851
Oral squamous cell carcinoma (OSCC) accounts for over 90% of oral malignancies, with more than 370 000 new cases and approximately 188 000 deaths annually worldwide. In China, there are roughly 65 000 new cases and 35 000 deaths each year, showing a significant upward trend compared with 2015 statistics. Despite continuous advancements in treatment modalities, the 5-year survival rate remains stagnant at 50%-60%, where tumor heterogeneity and therapy resistance persist as fundamental barriers to precision oncology. To address these critical challenges, this study established a standardized bioban-king protocol for OSCC patient-derived organoids (PDOs) (Patent: Method for constructing an oral squamous cell carcinoma organoid bank, ZL202311378598.3). Through groundbreaking optimization of culture media, enzymatic digestion kinetics, and stepwise cryopreservation, we achieved a biobanking success rate exceeding 95% and pioneered synchronous cultivation of matched primary tumors, lymph node metastases, and adjacent normal mucosa from individual patients, preserving spatial heterogeneity and stromal interactions. Leveraging this platform, we developed high-throughput drug screening: Quantified heterogeneity-driven differential chemoresponse using adenosine triphosphate (ATP)-based viability assays; We discovered resistance mechanisms: Identified sialylated cancer IgG (SIA-cIgG)-mediated cis-platin resistance (primary/secondary) through PTPN13 suppression, with anti-SIA-cIgG combination therapy demonstrating synergistic efficacy. Besides, we elucidated metastatic drivers: CRISPR-Cas9-edited organoids revealed WDR54 promoted metastasis via H3K4me3/H4K16ac epigenetic reprogramming, activating epithelial-mesenchymal plasticity (EMP) and inducing partial epithelial-mesenchymal transition (pEMT). This "holographic patient-mirroring" platform provided unprecedented resolution for OSCC precision therapy and had been formally incorporated into the Chinese Stomatological Association Technical Guidelines (Technical guideline for establishing patient-derived oral squamous cell carcinoma organoid banks, CHSA 2024-08). Future integration of immune-competent organoids, 3D-bioprinted vasculature, and multi-omics-AI systems will accelerate personalized oncology. These innovations will accelerate clinical translation of personalized therapeutic regimens, ultimately bridging the gap between bench research and bedside application.
Humans
;
Organoids/pathology*
;
Mouth Neoplasms/genetics*
;
Carcinoma, Squamous Cell/pathology*
;
Tissue Banks
;
Biological Specimen Banks
8.Exploration of New Susceptible Genes associated with Non-Alcoholic Fatty Liver Disease among Children with Obesity Using Whole Exome Sequencing.
Xiong Feng PAN ; Cai Lian WEI ; Jia You LUO ; Jun Xia YAN ; Xiang XIAO ; Jie WANG ; Yan ZHONG ; Mi Yang LUO
Biomedical and Environmental Sciences 2025;38(6):727-739
OBJECTIVE:
This study aimed to evaluate the association between susceptibility genes and non-alcoholic fatty liver disease (NAFLD) in children with obesity.
METHODS:
We conducted a two-step case-control study. Ninety-three participants were subjected to whole-exome sequencing (exploratory set). Differential genes identified in the small sample were validated in 1,022 participants using multiplex polymerase chain reaction and high-throughput sequencing (validation set).
RESULTS:
In the exploratory set, 14 genes from the NAFLD-associated pathways were identified. In the validation set, after adjusting for sex, age, and body mass index, ECI2 rs2326408 (dominant model: OR = 1.33, 95% CI: 1.02-1.72; additive model: OR = 1.22, 95% CI: 1.01-1.47), C6orf201 rs659305 (dominant model: OR = 1.30, 95% CI: 1.01-1.69; additive model: OR = 1.21, 95% CI: 1.00-1.45), CALML5 rs10904516 (pre-ad dominant model: OR = 1.36, 95% CI: 1.01-1.83; adjusted dominant model: OR = 1.40, 95% CI: 1.03-1.91; and pre-ad additive model: OR = 1.26, 95% CI: 1.04-1.66) polymorphisms were significantly associated with NAFLD in children with obesity ( P < 0.05). Interaction analysis revealed that the gene-gene interaction model of CALML5 rs10904516, COX11 rs17209882, and SCD5 rs3733228 was optional ( P < 0.05), demonstrating a negative interaction between the three genes.
CONCLUSION
In the Chinese population, the CALML5 rs10904516, C6orf201 rs659305, and ECI2 rs2326408 variants could be genetic markers for NAFLD susceptibility.
Humans
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Child
;
Male
;
Female
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Exome Sequencing
;
Adolescent
;
Polymorphism, Single Nucleotide
;
Obesity/complications*
;
Pediatric Obesity/complications*
;
China
9.Integrating Internet Search Data and Surveillance Data to Construct Influenza Epidemic Thresholds in Hubei Province: A Moving Epidemic Method Approach.
Cai Xia DANG ; Feng LIU ; Heng Liang LYU ; Zi Qian ZHAO ; Si Jin ZHU ; Yang WANG ; Yuan Yong XU ; Ye Qing TONG ; Hui CHEN
Biomedical and Environmental Sciences 2025;38(9):1150-1154
10.The neuroprotective effect of W1302 on acute ischemic stroke in rats
Shao-feng XU ; Jiang LI ; Jie CAI ; Nan FENG ; Mi ZHANG ; Ling WANG ; Wei-ping WANG ; Hai-hong HUANG ; Yan WANG ; Xiao-liang WANG
Acta Pharmaceutica Sinica 2024;59(9):2539-2544
2-(4-Methylthiazol-5-yl) ethyl nitrate hydrochloride (W1302) is a nitro containing derivative of clomethiazole, which is a novel neuroprotective agent with both carbon monoxide (NO) donor and weak

Result Analysis
Print
Save
E-mail