1.Caffeoylquinic acids from Erigeron breviscapus ameliorates cognitive impairment and mitochondrial dysfunction in AD by activating PINK1/Parkin-mediated mitophagy.
Yuan-Zhu PU ; Hai-Feng CHEN ; Xin-Yi WANG ; Can SU
China Journal of Chinese Materia Medica 2025;50(14):3969-3979
This study aimed to investigate the effects of caffeoylquinic acids from Erigeron breviscapus(EBCQA) on cognitive impairment and mitochondrial dysfunction in Alzheimer's disease(AD), and to explore its underlying mechanisms. The impacts of EBCQA on paralysis, β-amyloid(Aβ) oligomerization, and mRNA expression of mitophagy-related genes [PTEN-induced putative kinase 1(PINK1) homolog-encoding gene pink-1, Parkin homolog-encoding gene pdr-1, Bcl-2 interacting coiled-coil protein 1(Beclin 1) homolog-encoding gene bec-1, microtubule-associated protein 1 light chain 3(LC3) homolog-encoding gene lgg-1, autophagic adapter protein 62(p62) homolog-encoding gene sqst-1] were examined in the AD Caenorhabditis elegans CL4176 model, along with mitochondrial functions including adenosine triphosphate(ATP) content, enzyme activities of mitochondrial respiratory chain complexes Ⅰ,Ⅲ, and Ⅳ, and mitochondrial membrane potential. Additionally, the effects of EBCQA on the green fluorescent protein(GFP)/red fluorescent protein from Discosoma sp.(DsRed) ratio, the expression of phosphatidylethanolamine-modified and GFP-labeled LGG-1(PE-GFP::LGG-1)/GFP-labeled LGG-1(GFP::LGG-1), and GFP-labeled SQST-1(GFP::SQST-1) proteins were investigated in transgenic C. elegans strains. The effect of EBCQA on paralysis was further evaluated after RNA interference(RNAi)-mediated suppression of the pink-1 and pdr-1 genes in CL4176 strain. An AD rat model was established through intraperitoneal injection of D-galactose and intragastric administration of aluminum trichloride. The effects of β-nicotinamide mononucleotide(NMN) and EBCQA on learning and memory ability, neuronal morphology, mitophagy occurrence, mitophagy-related protein expression(PINK1, Parkin, Beclin 1, LC3-Ⅱ/LC3-Ⅰ, p62), and mitochondrial functions(ATP content; enzyme activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ; mitochondrial membrane potential) were investigated in this AD rat model. The results showed that EBCQA delayed paralysis onset in the CL4176 strain, reduced Aβ oligomer formation, and upregulated the mRNA expression levels of lgg-1, bec-1, pink-1, and pdr-1, while downregulating sqst-1 mRNA expression. EBCQA also enhanced ATP content, mitochondrial membrane potential, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅲ, and Ⅳ. Furthermore, EBCQA improved the PE-GFP::LGG-1/GFP::LGG-1 ratio, reduced GFP::SQST-1 expression, and decreased the GFP/DsRed ratio. Notably, the ability of EBCQA to delay paralysis was significantly reduced following RNAi-mediated suppression of pink-1 and pdr-1 in CL4176 strain. In AD rats, the administration of NMN or EBCQA significantly improved learning and memory, restored neuronal morphology in the hippocampus, increased autophagosome numbers, and upregulated the expression of PINK1, Parkin, Beclin 1, and the LC3-Ⅱ/LC3-Ⅰ ratio, while reducing p62 expression. Additionally, the treatment with NMN or EBCQA both elevated ATP content, mitochondrial respiratory chain complex Ⅰ, Ⅲ, and Ⅳ activities, and mitochondrial membrane potential in the hippocampus. The above findings indicate that EBCQA improves cognitive impairment and mitochondrial dysfunction in AD, possibly through activation of PINK1/Parkin-mediated mitophagy.
Animals
;
Alzheimer Disease/psychology*
;
Mitophagy/drug effects*
;
Mitochondria/genetics*
;
Caenorhabditis elegans/metabolism*
;
Ubiquitin-Protein Ligases/genetics*
;
Cognitive Dysfunction/physiopathology*
;
Rats
;
Protein Kinases/genetics*
;
Humans
;
Male
;
Disease Models, Animal
;
Caenorhabditis elegans Proteins/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
2.Endosomal catabolism of phosphatidylinositol 4,5-bisphosphate is fundamental in building resilience against pathogens.
Chao YANG ; Longfeng YAO ; Dan CHEN ; Changling CHEN ; Wenbo LI ; Hua TONG ; Zihang CHENG ; Yanling YAN ; Long LIN ; Jing ZHANG ; Anbing SHI
Protein & Cell 2025;16(3):161-187
Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.
Animals
;
Caenorhabditis elegans/genetics*
;
Endosomes/immunology*
;
Caenorhabditis elegans Proteins/immunology*
;
Phosphatidylinositol 4,5-Diphosphate/immunology*
;
Immunity, Innate
;
Pseudomonas aeruginosa/immunology*
;
rab GTP-Binding Proteins/genetics*
;
Diglycerides/metabolism*
3.A pair of transporters controls mitochondrial Zn2+ levels to maintain mitochondrial homeostasis.
Tengfei MA ; Liyuan ZHAO ; Jie ZHANG ; Ruofeng TANG ; Xin WANG ; Nan LIU ; Qian ZHANG ; Fengyang WANG ; Meijiao LI ; Qian SHAN ; Yang YANG ; Qiuyuan YIN ; Limei YANG ; Qiwen GAN ; Chonglin YANG
Protein & Cell 2022;13(3):180-202
Zn2+ is required for the activity of many mitochondrial proteins, which regulate mitochondrial dynamics, apoptosis and mitophagy. However, it is not understood how the proper mitochondrial Zn2+ level is achieved to maintain mitochondrial homeostasis. Using Caenorhabditis elegans, we reveal here that a pair of mitochondrion-localized transporters controls the mitochondrial level of Zn2+. We demonstrate that SLC-30A9/ZnT9 is a mitochondrial Zn2+ exporter. Loss of SLC-30A9 leads to mitochondrial Zn2+ accumulation, which damages mitochondria, impairs animal development and shortens the life span. We further identify SLC-25A25/SCaMC-2 as an important regulator of mitochondrial Zn2+ import. Loss of SLC-25A25 suppresses the abnormal mitochondrial Zn2+ accumulation and defective mitochondrial structure and functions caused by loss of SLC-30A9. Moreover, we reveal that the endoplasmic reticulum contains the Zn2+ pool from which mitochondrial Zn2+ is imported. These findings establish the molecular basis for controlling the correct mitochondrial Zn2+ levels for normal mitochondrial structure and functions.
Animals
;
Caenorhabditis elegans/metabolism*
;
Cation Transport Proteins/genetics*
;
Homeostasis
;
Mitochondria/metabolism*
;
Zinc/metabolism*
4.Genetic Diversity, Antibiotic Resistance, and Pathogenicity of Aeromonas Species from Food Products in Shanghai, China.
Feng Tian QU ; Wen Qing WANG ; Qian LIU ; Hai Jian ZHOU ; Jin Rui HU ; Xiao Li DU ; Yue WANG ; Jia Qi XUE ; Zhi Gang CUI ; Gui Lin XIE ; Shuang MENG
Biomedical and Environmental Sciences 2022;35(9):842-853
OBJECTIVE:
Aeromonas has recently been recognized as an emerging human pathogen. Aeromonas-associated diarrhea is a phenomenon occurring worldwide. This study was designed to determine the prevalence, genetic diversity, antibiotic resistance, and pathogenicity of Aeromonas strains isolated from food products in Shanghai.
METHODS:
Aeromonas isolates ( n = 79) collected from food samples were analyzed using concatenated gyrB- cpn60 sequencing. The antibiotic resistance of these isolates was determined using antimicrobial susceptibility testing. Pathogenicity was assessed using β-hemolytic, extracellular protease, virulence gene detection, C. elegans liquid toxicity (LT), and cytotoxicity assays.
RESULTS:
Eight different species were identified among the 79 isolates. The most prevalent Aeromonas species were A. veronii [62 (78.5%)], A. caviae [6 (7.6%)], A. dhakensis [3 (3.8%)], and A. salmonicida [3 (3.8%)]. The Aeromonas isolates were divided into 73 sequence types (STs), of which 65 were novel. The isolates were hemolytic (45.6%) and protease-positive (81.0%). The most prevalent virulence genes were act (73.4%), fla (69.6%), aexT (36.7%), and ascV (30.4%). The results of C. elegans LT and cytotoxicity assays revealed that A. dhakensis and A. hydrophila were more virulent than A. veronii, A. caviae, and A. bivalvium. Antibiotic resistance genes [ tetE, blaTEM, tetA, qnrS, aac(6)-Ib, mcr -1, and mcr-3] were detected in the isolates. The multidrug-resistance rate of the Aeromonas isolates was 11.4%, and 93.7% of the Aeromonas isolates were resistant to cefazolin.
CONCLUSION
The taxonomy, antibiotic resistance, and pathogenicity of different Aeromonas species varied. The Aeromonas isolates A. dhakensis and A. hydrophila were highly pathogenic, indicating that food-derived Aeromonas isolates are potential risks for public health and food safety. The monitoring of food quality and safety will result in better prevention and treatment strategies to control diarrhea illnesses in China.
Aeromonas/genetics*
;
Animals
;
Anti-Bacterial Agents/pharmacology*
;
Caenorhabditis elegans
;
Cefazolin
;
China/epidemiology*
;
Diarrhea
;
Drug Resistance, Multiple, Bacterial/genetics*
;
Genetic Variation
;
Humans
;
Peptide Hydrolases/genetics*
;
Virulence/genetics*
5.Construction of transgenic mice with Δ15 Des enzyme activity by using a PiggyBac transposon.
Ying WANG ; Shisai YANG ; Xuan ZHAO ; Ya LI ; Lulu LÜ ; Guiming ZHU
Chinese Journal of Biotechnology 2022;38(1):196-206
Essential fatty acids are those that could not be synthesized by the body itself but crucial for health and life. Studies have shown that ω-3 fatty acids may facilitate human physiological functions. Mammals lack ω-3 desaturase gene, and the Δ15 fatty acid desaturase (Δ15 Des) from Caenorhabditis elegans can transform the ω-6 polyunsaturated fatty acids (PUFAs) into ω-3 PUFAs. Transgenic mice expressing Δ15 Des enzyme activity was constructed by using a PiggyBac transposon (PB). Homozygous transgenic mice with stable inheritance was bred in a short time, with a positive rate of 35.1% achieved. The mice were fed with 6% ω-6 PUFAs and the changes of fatty acids in mice were detected by gas chromatography (GC). The expression level of Δ15 Des in mice was detected by quantitative PCR (qPCR) and Western blotting (WB). qPCR and GC analysis revealed that the percentage of positive mice harboring the active gene was 61.53%. Compared with traditional methods, the transformation efficiency and activity of Δ15 Des were significantly improved, and homozygotes showed higher activity than that of heterozygotes. This further verified the efficient transduction efficiency of the PiggyBac transposon system.
Animals
;
Caenorhabditis elegans/genetics*
;
Fatty Acid Desaturases/genetics*
;
Fatty Acids
;
Fatty Acids, Omega-3
;
Mice
;
Mice, Transgenic
6.Cold stress reduces lifespan and mobility of C. elegans by mediating lipid metabolism disorder and abnormal stress.
Hao SHI ; Chao ZHANG ; Jia Min ZHAO ; Yi Wen LI ; Yun Jia LI ; Jun Jie LI ; Zhi Yun ZENG ; Lei GAO
Journal of Southern Medical University 2022;42(8):1159-1165
OBJECTIVE:
To investigate the changes of lipid metabolism and stress response of adult C.elegans exposed to non-freezing low temperature and explore the possible mechanism.
METHODS:
The survival rate and activity of adult C.elegans cultured at 20℃ or 4℃ were observed.Lipid metabolism of the cultured adult C.elegans was evaluated using oil red O staining and by detecting the expressions of the genes related with lipid metabolism.The effects of low temperature exposure on stress level of adult C.elegans were evaluated using mitochondrial fluorescence staining and by detecting the expression levels of stress-related genes and antioxidant genes at both the mRNA and protein levels.
RESULTS:
The lifespan and activity of adult C.elegans exposed to low temperature were significantly reduced with decreased lipid accumulation (P < 0.05) and decreased expressions of genes related with fatty acid synthesis and metabolism (fat-5, fat-6, fat-7, fasn-1, nhr-49, acs-2 and aco-1;P < 0.01).Cold stress significantly increased the expressions of heat shock proteins hsp-70 and hsp16.2(P < 0.05) but lowered the number of mitochondria (P < 0.0001) and the expressions of atfs-1, sod-2, sod-3 and gpx-1(P < 0.05).Knockout of fat-5, nhr-49 or both fat-5 and fat-6 obviously enhanced the sensitivity of C.elegans to cold stress as shown by further reduced activity (P < 0.05) and reduced survival rate at 24 h (P < 0.0001) under cold stress.
CONCLUSION
Exposure to a low temperature at 4℃ results in lowered lipid metabolism of adult C.elegans accompanied by a decreased mitochondrial number and quality control ability, which triggers high expressions of stress-related genes and causes reduction of antioxidant capacity, thus callsing lowered activity and reduced lifespan of C.elegans.
Animals
;
Antioxidants/metabolism*
;
Caenorhabditis elegans
;
Caenorhabditis elegans Proteins/genetics*
;
Cold-Shock Response
;
Lipid Metabolism
;
Lipid Metabolism Disorders
;
Longevity/genetics*
7.Toxicity and metabolism of 3-bromopyruvate in Caenorhabditis elegans.
Qiao-Ling GU ; Yan ZHANG ; Xi-Mei FU ; Zhao-Lian LU ; Yao YU ; Gen CHEN ; Rong MA ; Wei KOU ; Yong-Mei LAN
Journal of Zhejiang University. Science. B 2020;21(1):77-86
In this study, we aimed to evaluate the toxic effects, changes in life span, and expression of various metabolism-related genes in Caenorhabditis elegans, using RNA interference (RNAi) and mutant strains, after 3-bromopyruvate (3-BrPA) treatment. C. elegans was treated with various concentrations of 3-BrPA on nematode growth medium (NGM) plates, and their survival was monitored every 24 h. The expression of genes related to metabolism was measured by the real-time fluorescent quantitative polymerase chain reaction (qPCR). Nematode survival in the presence of 3-BrPA was also studied after silencing three hexokinase (HK) genes. The average life span of C. elegans cultured on NGM with 3-BrPA was shortened to 5.7 d compared with 7.7 d in the control group. hxk-1, hxk-2, and hxk-3 were overexpressed after the treatment with 3-BrPA. After successfully interfering hxk-1, hxk-2, and hxk-3, the 50% lethal concentration (LC50) of all mutant nematodes decreased with 3-BrPA treatment for 24 h compared with that of the control. All the cyp35 genes tested were overexpressed, except cyp-35B3. The induction of cyp-35A1 expression was most obvious. The LC50 values of the mutant strains cyp-35A1, cyp-35A2, cyp-35A4, cyp-35B3, and cyp-35C1 were lower than that of the control. Thus, the toxicity of 3-BrPA is closely related to its effect on hexokinase metabolism in nematodes, and the cyp-35 family plays a key role in the metabolism of 3-BrPA.
Animals
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/genetics*
;
Cytochrome P-450 Enzyme System/genetics*
;
Hexokinase/physiology*
;
Pyruvates/toxicity*
;
RNA, Messenger/analysis*
8.Sec61β facilitates the maintenance of endoplasmic reticulum homeostasis by associating microtubules.
Yimeng ZHU ; Gangming ZHANG ; Shaoyu LIN ; Juanming SHI ; Hong ZHANG ; Junjie HU
Protein & Cell 2018;9(7):616-628
Sec61β, a subunit of the Sec61 translocon complex, is not essential in yeast and commonly used as a marker of endoplasmic reticulum (ER). In higher eukaryotes, such as Drosophila, deletion of Sec61β causes lethality, but its physiological role is unclear. Here, we show that Sec61β interacts directly with microtubules. Overexpression of Sec61β containing small epitope tags, but not a RFP tag, induces dramatic bundling of the ER and microtubule. A basic region in the cytosolic domain of Sec61β is critical for microtubule association. Depletion of Sec61β induces ER stress in both mammalian cells and Caenorhabditis elegans, and subsequent restoration of ER homeostasis correlates with the microtubule binding ability of Sec61β. Loss of Sec61β causes increased mobility of translocon complexes and reduced level of membrane-bound ribosomes. These results suggest that Sec61β may stabilize protein translocation by linking translocon complex to microtubule and provide insight into the physiological function of ER-microtubule interaction.
Animals
;
COS Cells
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cercopithecus aethiops
;
Endoplasmic Reticulum
;
metabolism
;
Homeostasis
;
Humans
;
Microtubules
;
metabolism
;
SEC Translocation Channels
;
deficiency
;
genetics
;
metabolism
9.C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans.
Lu WANG ; Fei XU ; Guishuan WANG ; Xiaorong WANG ; Ajuan LIANG ; Hefeng HUANG ; Fei SUN
Protein & Cell 2016;7(10):714-721
Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.
Animals
;
Caenorhabditis elegans
;
genetics
;
metabolism
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Female
;
Lipid Droplets
;
metabolism
;
Lipid Metabolism
;
physiology
;
Longevity
;
physiology
;
Mutation
;
Oogenesis
;
physiology
10.Anti-aging properties of Ribes fasciculatum in Caenorhabditis elegans.
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):335-342
The present study investigated the effects and underlying mechanism of ethylacetate fraction of Ribes fasciculatum (ERF) on the lifespan and stress tolerance using a Caenorhabditis elegans model. The longevity activity of ERF was determined by lifespan assay under normal culture condition. The survival rate of nematodes under various stress conditions was assessed to validate the effects of ERF on the stress tolerance. To determine the antioxidant potential of ERF, the superoxide dismutase (SOD) activities and intracellular reactive oxygen species (ROS) levels were investigated. The ERF-mediated change in SOD-3 expression was examined using GFP-expressing transgenic strain. The effects of ERF on the aging-related factors were investigated by reproduction assay and pharyngeal pumping assay. The intestinal lipofuscin levels of aged nematodes were also measured. The mechanistic studies were performed using selected mutant strains. Our results indicated that ERF showed potent lifespan extension effects on the wild-type nematode under both normal and various stress conditions. The ERF treatment also enhanced the activity and expression of superoxide dismutase (SOD) and attenuated the intracellular ROS levels. Moreover, ERF-fed nematodes showed decreased lipofuscin accumulation, indicating ERF might affect age-associated changes in C. elegans. The results of mechanistic studies indicated that there was no significant lifespan extension in ERF-treated daf-2, age-1, sir-2.1, and daf-16 null mutants, suggesting that they were involved in ERF-mediated lifespan regulation. In conclusion, R. fasciculatum confers increased longevity and stress resistance in C. elegans via SIR-2.1-mediated DAF-16 activation, dependent on the insulin/IGF signaling pathway.
Aging
;
drug effects
;
genetics
;
metabolism
;
Animals
;
Caenorhabditis elegans
;
drug effects
;
genetics
;
growth & development
;
metabolism
;
Caenorhabditis elegans Proteins
;
genetics
;
metabolism
;
Humans
;
Longevity
;
drug effects
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
pharmacology
;
Reactive Oxygen Species
;
metabolism
;
Ribes
;
chemistry
;
Signal Transduction
;
drug effects

Result Analysis
Print
Save
E-mail