2.Advances in the RNA-targeting CRISPR-Cas systems.
Chinese Journal of Biotechnology 2023;39(4):1363-1373
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated proteins) system is an adaptive immune system of bacteria and archaea against phages, plasmids and other exogenous genetic materials. The system uses a special RNA (CRISPR RNA, crRNA) guided endonuclease to cut the exogenous genetic materials complementary to crRNA, thus blocking the infection of exogenous nucleic acid. According to the composition of the effector complex, CRISPR-Cas system can be divided into two categories: class 1 (including type Ⅰ, Ⅳ, and Ⅲ) and class 2 (including type Ⅱ, Ⅴ, and Ⅵ). Several CRISPR-Cas systems have been found to have very strong ability to specifically target RNA editing, such as type Ⅵ CRISPR-Cas13 system and type Ⅲ CRISPR-Cas7-11 system. Recently, several systems have been widely used in the field of RNA editing, making them a powerful tool for gene editing. Understanding the composition, structure, molecular mechanism and potential application of RNA-targeting CRISPR-Cas systems will facilitate the mechanistic research of this system and provide new ideas for developing gene editing tools.
CRISPR-Cas Systems/genetics*
;
RNA/genetics*
;
Bacteria/genetics*
;
Gene Editing
;
Archaea
3.Generation of Mlk3 KO mice by CRISPR/Cas9 and its effect on blood pressure.
Shijuan GAO ; Guangming FANG ; Yanhong ZHANG ; Jie DU
Chinese Journal of Biotechnology 2023;39(4):1644-1654
To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.
Animals
;
Mice
;
Mice, Knockout
;
CRISPR-Cas Systems
;
Blood Pressure
;
Gene Knockout Techniques
;
Zygote
4.Multiplex gene editing and regulation techniques based on CRISPR/Cas system.
Xiangrui FAN ; Junyan WANG ; Liya LIANG ; Rongming LIU
Chinese Journal of Biotechnology 2023;39(6):2449-2464
The CRISPR/Cas systems comprising the clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an acquired immune system unique to archaea or bacteria. Since its development as a gene editing tool, it has rapidly become a popular research direction in the field of synthetic biology due to its advantages of high efficiency, precision, and versatility. This technique has since revolutionized the research of many fields including life sciences, bioengineering technology, food science, and crop breeding. Currently, the single gene editing and regulation techniques based on CRISPR/Cas systems have been increasingly improved, but challenges still exist in the multiplex gene editing and regulation. This review focuses on the development and application of multiplex gene editing and regulation techniques based on the CRISPR/Cas systems, and summarizes the techniques for multiplex gene editing or regulation within a single cell or within a cell population. This includes the multiplex gene editing techniques developed based on the CRISPR/Cas systems with double-strand breaks; or with single-strand breaks; or with multiple gene regulation techniques, etc. These works have enriched the tools for the multiplex gene editing and regulation and contributed to the application of CRISPR/Cas systems in the multiple fields.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Bacteria/genetics*
;
Archaea
;
Bioengineering
5.Precision gene editing technologies based on CRISPR/Cas9: a review.
Shan XUE ; Shuya WANG ; Li LIU ; Qiaofang ZHONG ; Zaiquan CHENG ; Suqin XIAO
Chinese Journal of Biotechnology 2023;39(7):2566-2578
Gene editing technology is a genetic operation technology that can modify the DNA sequence at the genomic level. The precision gene editing technology based on CRISPR/Cas9 system is a gene editing technology that is easy to operate and widely used. Unlike the traditional CRISPR/Cas9 system, the precision gene editing technology can perform site-directed mutation of genes without DNA template. This review summarizes the recent development of precision gene editing technology based on CRISPR/Cas9, and prospects the challenges and opportunities of this technology.
Gene Editing
;
CRISPR-Cas Systems/genetics*
;
Mutation
;
Genome
6.Development of a tau-V337M mouse model using CRISPR/Cas9 system and enhanced ssODN-mediated recombination.
Lijiao CHEN ; Li DENG ; Wenjie SUN ; Jie LIU ; Ting ZHANG ; Shangang LI
Chinese Journal of Biotechnology 2023;39(7):3003-3014
The generation of a tau-V337M point mutation mouse model using gene editing technology can provide an animal model with fast disease progression and more severe symptoms, which facilitate the study of pathogenesis and treatment of Alzheimer's disease (AD). In this study, single guide RNAs (sgRNA) and single-stranded oligonucleotides (ssODN) were designed and synthesized in vitro. The mixture of sgRNA, Cas9 protein and ssODN was microinjected into the zygotes of C57BL/6J mice. After DNA cutting and recombination, the site homologous to human 337 valine (GTG) in exon 11 was mutated into methionine (ATG). In order to improve the efficiency of recombination, a Rad51 protein was added. The female mice mated with the nonvasectomy male mice were used as the surrogates. Subsequently, the 2-cell stage gene edited embryos were transferred into the unilateral oviduct, and the F0 tau-V337M mutation mice were obtained. Higher mutation efficiency could be obtained by adding Rad51 protein. The F0 tau-V337M point mutation mice can pass the mutation on to the F1 generation mice. In conclusion, this study successfully established the first tau-V337M mutation mouse by using Cas9, ssODN and Rad51. These results provide a new method for developing AD mice model which can be used in further research on the pathogenesis and treatment of AD.
Animals
;
Male
;
Female
;
Mice
;
Humans
;
CRISPR-Cas Systems/genetics*
;
RNA, Guide, CRISPR-Cas Systems
;
Rad51 Recombinase/genetics*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Recombination, Genetic
7.Correction of the pathogenic mutation in the G6PC3 gene by adenine base editing in mutant embryos.
Man HONG ; Ping WANG ; Tao SHANGGUAN ; Guang Lei LI ; Rui Peng BIAN ; Wei HE ; Wen JIANG ; Jie Ping CHEN
Chinese Journal of Hematology 2023;44(4):308-315
Objective: To determine whether the adenine base editor (ABE7.10) can be used to fix harmful mutations in the human G6PC3 gene. Methods: To investigate the safety of base-edited embryos, off-target analysis by deep sequencing was used to examine the feasibility and editing efficiency of various sgRNA expression vectors. The human HEK293T mutation models and human embryos were also used to test the feasibility and editing efficiency of correction. Results: ①The G6PC3(C295T) mutant cell model was successfully created. ②In the G6PC3(C295T) mutant cell model, three distinct Re-sgRNAs were created and corrected, with base correction efficiency ranging from 8.79% to 19.56% . ③ ABE7.10 could successfully fix mutant bases in the human pathogenic embryo test; however, base editing events had also happened in other locations. ④ With the exception of one noncoding site, which had a high safety rate, deep sequencing analysis revealed that the detection of 32 probable off-target sites was <0.5% . Conclusion: This study proposes a new base correction strategy based on human pathogenic embryos; however, it also produces a certain nontarget site editing, which needs to be further analyzed on the PAM site or editor window.
Humans
;
Gene Editing
;
CRISPR-Cas Systems
;
Adenine
;
HEK293 Cells
;
Mutation
;
Glucose-6-Phosphatase/metabolism*
8.Rapid detection and genotyping of SARS-CoV-2 Omicron BA.4/5 variants using a RT-PCR and CRISPR-Cas12a-based assay.
Yunan MA ; Lirong ZOU ; Yuanhao LIANG ; Quanxun LIU ; Qian SUN ; Yulian PANG ; Hongqing LIN ; Xiaoling DENG ; Shixing TANG
Journal of Southern Medical University 2023;43(4):516-526
OBJECTIVE:
To establish a rapid detection and genotyping method for SARS-CoV-2 Omicron BA.4/5 variants using CRISPPR-Cas12a gene editing technology.
METHODS:
We combined reverse transcription-polymerase chain reaction (RT-PCR) and CRISPR gene editing technology and designed a specific CRISPPR RNA (crRNA) with suboptimal protospacer adjacent motifs (PAM) for rapid detection and genotyping of SARS- CoV-2 Omicron BA.4/5 variants. The performance of this RT- PCR/ CRISPPR-Cas12a assay was evaluated using 43 clinical samples of patients infected by wild-type SARS-CoV-2 and the Alpha, Beta, Delta, Omicron BA. 1 and BA. 4/5 variants and 20 SARS- CoV- 2-negative clinical samples infected with 11 respiratory pathogens. With Sanger sequencing method as the gold standard, the specificity, sensitivity, concordance (Kappa) and area under the ROC curve (AUC) of RT-PCR/CRISPPR-Cas12a assay were calculated.
RESULTS:
This assay was capable of rapid and specific detection of SARS- CoV-2 Omicron BA.4/5 variant within 30 min with the lowest detection limit of 10 copies/μL, and no cross-reaction was observed in SARS-CoV-2-negative clinical samples infected with 11 common respiratory pathogens. The two Omicron BA.4/5 specific crRNAs (crRNA-1 and crRNA-2) allowed the assay to accurately distinguish Omicron BA.4/5 from BA.1 sublineage and other major SARS-CoV-2 variants of concern. For detection of SARS-CoV-2 Omicron BA.4/5 variants, the sensitivity of the established assay using crRNA-1 and crRNA-2 was 97.83% and 100% with specificity of 100% and AUC of 0.998 and 1.000, respectively, and their concordance rate with Sanger sequencing method was 92.83% and 96.41%, respectively.
CONCLUSION
By combining RT-PCR and CRISPPR-Cas12a gene editing technology, we successfully developed a new method for rapid detection and identification of SARS-CoV-2 Omicron BA.4/5 variants with a high sensitivity, specificity and reproducibility, which allows rapid detection and genotyping of SARS- CoV-2 variants and monitoring of the emerging variants and their dissemination.
Humans
;
COVID-19
;
CRISPR-Cas Systems
;
Genotype
;
Reproducibility of Results
;
Reverse Transcriptase Polymerase Chain Reaction
;
SARS-CoV-2/genetics*
;
RNA
;
COVID-19 Testing
10.A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection.
Fei FENG ; Yunkai ZHU ; Yanlong MA ; Yuyan WANG ; Yin YU ; Xinran SUN ; Yuanlin SONG ; Zhugui SHAO ; Xinxin HUANG ; Ying LIAO ; Jingyun MA ; Yuping HE ; Mingyuan WANG ; Longhai TANG ; Yaowei HUANG ; Jincun ZHAO ; Qiang DING ; Youhua XIE ; Qiliang CAI ; Hui XIAO ; Chun LI ; Zhenghong YUAN ; Rong ZHANG
Protein & Cell 2023;14(1):64-68

Result Analysis
Print
Save
E-mail