1.Construction of a human anti-SARS-CoV-2 scFv library and identification of broad-spectrum neutralizing antibodies.
Huimin YIN ; Hai LYU ; Ying CHI ; Jingxian LIU ; Yongjun JIAO ; Pingmin WEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):154-160
Objective To construct a library of human-derived anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) single-chain variable fragments (scFv) and screen for broad-spectrum neutralizing antibodies to identify candidate molecules for the development of diagnostic and therapeutic agents. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood of patients who had recovered from novel coronavirus infection. Total RNA was extracted from these PBMCs and reverse transcribed into cDNA, which was used as a template for constructing a human anti-SARS-CoV-2 scFv library. Phage display technology was used to screen for scFv antibodies specific to the SARS-CoV-2 S protein. Full-length IgG antibodies were synthesized through sequence analysis and human IgG expression, and their binding capacity and neutralizing activity against SARS-CoV-2 were evaluated. Results A human-derived scFv antibody library against SARS-CoV-2 with a capacity of 1.56×107 CFU was successfully constructed. Two specific scFv antibodies were screened from this library and expressed as full-length IgG antibodies (IgG-A10 and IgG-G6). IgG-A10 exhibited strong neutralizing activity against both the original SARS-CoV-2 strain (WT) and the XBB subvariant of the Omicron variant. However, the neutralizing activity of this antibody against the JN.1 sub lineage of the Omicron BA.2.86 variant was moderate. Conclusion This study has successfully constructed a human anti-SARS-CoV-2 scFv antibody library from the peripheral blood of recovered patients, and screened and expressed anti-SARS-CoV-2 IgG antibodies with neutralizing activity, laying a foundation for the prevention, diagnosis, and treatment of SARS-CoV-2 infection.
Humans
;
Single-Chain Antibodies/genetics*
;
SARS-CoV-2/immunology*
;
COVID-19/immunology*
;
Immunoglobulin G/genetics*
;
Antibodies, Viral/genetics*
;
Peptide Library
;
Spike Glycoprotein, Coronavirus/immunology*
;
Antibodies, Neutralizing/immunology*
;
Leukocytes, Mononuclear/immunology*
;
Broadly Neutralizing Antibodies/immunology*
2.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
3.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
4.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
5.Research progress in the translation efficiency of mRNA vaccines.
Tao LIU ; Shengqi WANG ; Wuju LI
Chinese Journal of Biotechnology 2024;40(11):3930-3950
Compared with conventional vaccines, mRNA vaccines have considerable advantages in design, production, and application, especially in dealing with emerging infectious diseases. Particularly, mRNA vaccines were the first to be recommended by the World Health Organization for emergency use during the COVID-19 pandemic. A key to the design of mRNA vaccines is to ensure the stable and sufficient expression of the encoded protein in the recipient. In recent years, advances have been attained in the experimental and computational research in this area. This review focused on the progress and problems in improving the translation efficiency of mRNA vaccines in recent years, aiming to promote related research.
mRNA Vaccines
;
Humans
;
Protein Biosynthesis
;
Vaccines, Synthetic/immunology*
;
COVID-19 Vaccines/immunology*
;
COVID-19/prevention & control*
;
SARS-CoV-2/genetics*
;
RNA, Messenger/genetics*
6.Design and functional validation of a chimeric E3 ubiquitin ligase targeting the spike protein S1 subunit of SARS-CoV-2.
Yan DAI ; Jiayu LIN ; Xiaoya ZHANG ; Haorui LU ; Lang RAO
Chinese Journal of Biotechnology 2024;40(11):4071-4083
The spike (S) protein plays a crucial role in the entry of SARS-CoV-2 into host cells. The S protein contains two subunits, S1 and S2. The receptor-binding domain (RBD) of the S1 subunit binds to the receptor angiotensin-converting enzyme 2 (ACE2) to enter the host cells. Therefore, degrading S1 is one of the feasible strategies to inhibit SARS-CoV-2 infection. The purpose of this study is to develop a degradation tool targeting S1. First, we constructed a HEK 293 cell line stably expressing S1 by using a three-plasmid lentivirus system. The overexpression of the mitochondrial E3 ubiquitin protein ligase 1 (MUL1) in this cell line promoted the ubiquitination of S1 and accelerated its proteasomal degradation. Further research showed the polyubiquitination of S1 catalyzed by MUL1 mainly occurred via the addition of K48-linked chains. Moreover, the specific peptide LCB1, which targets and recognizes S1, was combined with MUL1 to create the chimeric E3 ubiquitin ligase LCB1-MUL1. In comparison to MUL1, this chimeric enzyme demonstrated improved catalytic efficiency, resulting in a reduction of S1's half-life from 12 h to 9 h. In summary, this study elucidated the mechanism by which MUL1 promotes the ubiquitination modification of S1 and facilitates its degradation through the proteasome, and preliminarily validated the effectiveness of targeted degradation of S1 by chimeric enzyme LCB1-MUL1.
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
HEK293 Cells
;
Ubiquitination
;
Spike Glycoprotein, Coronavirus/genetics*
;
SARS-CoV-2/metabolism*
;
Recombinant Fusion Proteins/metabolism*
;
Proteasome Endopeptidase Complex/genetics*
;
COVID-19/metabolism*
;
Angiotensin-Converting Enzyme 2/genetics*
7.mRNA vaccines for infectious diseases: research progress and applications.
Fengming QIN ; Ning REN ; Wenyu CHENG ; Heng WEI
Chinese Journal of Biotechnology 2023;39(10):3966-3984
Messenger RNA (mRNA) vaccines emerge as promising vaccines to prevent infectious diseases. Compared with traditional vaccines, mRNA vaccines present numerous advantages, such as high potency, safe administration, rapid production potentials, and cost-effective manufacturing. In 2020, two COVID-19 vaccines (BNT162b2 and mRNA-1273) were approved by the Food and Drug Administration (FDA). The two vaccines showed high efficiency in combating COVID-19, which indicates the great advantages of mRNA technology in developing vaccines against emergent infectious diseases. Here, we summarize the type, immune mechanisms, modification methods of mRNA vaccines, and their applications in preventing infectious diseases. Current challenges and future perspectives in developing mRNA vaccines are also discussed.
United States
;
Humans
;
mRNA Vaccines
;
BNT162 Vaccine
;
COVID-19 Vaccines/genetics*
;
Communicable Diseases
;
RNA, Messenger/genetics*
8.Research progress in vaccines of SARS-CoV-2.
Xinbin GE ; Qigan QU ; Zeguang WANG ; Shungeng ZHANG ; Yan CHI ; Chunhui SHAN ; Ruihan LIU ; Qing ZHAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):946-951
Since the outbreak of corona virus disease 2019 (COVID-19), viral strains have mutated and evolved. Vaccine research is the most direct and effective way to control COVID-19. According to different production mechanisms, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines included inactivated virus vaccine, live attenuated vaccine, mRNA vaccine, DNA vaccine, viral vector vaccine, virus-like particle vaccine and protein subunit vaccine. Among them, viral protein subunit vaccine has a wide application prospect due to its high safety and effectiveness. Viral nucleocapsid protein has high immunogenicity and low variability which could be a new direction for vaccine production. We summarized the current development of vaccine research by reviewing the current progress, vaccine safety and vaccine immune efficiency. It is hoped that the proposed possible development strategies could provide a reference for epidemic prevention work in future.
Humans
;
SARS-CoV-2/genetics*
;
COVID-19/prevention & control*
;
Protein Subunits
;
Vaccines, DNA
;
Nucleocapsid Proteins
9.A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection.
Fei FENG ; Yunkai ZHU ; Yanlong MA ; Yuyan WANG ; Yin YU ; Xinran SUN ; Yuanlin SONG ; Zhugui SHAO ; Xinxin HUANG ; Ying LIAO ; Jingyun MA ; Yuping HE ; Mingyuan WANG ; Longhai TANG ; Yaowei HUANG ; Jincun ZHAO ; Qiang DING ; Youhua XIE ; Qiliang CAI ; Hui XIAO ; Chun LI ; Zhenghong YUAN ; Rong ZHANG
Protein & Cell 2023;14(1):64-68
10.Research and application of the SARS-CoV-2 vaccine based on adenovirus vector technology platform.
Ying ZHANG ; Wen Zhou YU ; Zun Dong YIN ; Tong Zhan WANG ; Xiao Dong SUN ; Ai Qiang XU
Chinese Journal of Preventive Medicine 2023;57(7):1082-1095
During the global efforts to prevent and control the COVID-19 pandemic, extensive research and development of SARS-CoV-2 vaccines using various technical approaches have taken place. Among these, vaccines based on adenovirus vector have gained substantial knowledge and experience in effectively combating potential emerging infectious diseases, while also providing novel ideas and methodologies for vaccine research and development (R&D). This comprehensive review focuses on the adenovirus vector technology platform in vaccine R&D, emphasizing the importance of mucosal immunity induced by adenoviral vector-based vaccine for COVID-19 prevention. Furthermore, it analyzes the key technical challenges and obstacles encountered in the development of vaccines based on the adenovirus vector technology platform, with the aim of providing valuable insights and references for researchers and professionals in related fields.
Humans
;
COVID-19 Vaccines
;
Pandemics/prevention & control*
;
COVID-19/prevention & control*
;
SARS-CoV-2/genetics*
;
Viral Vaccines/genetics*
;
Adenoviridae/genetics*
;
Technology

Result Analysis
Print
Save
E-mail