1.Effects of Huayu Tongluo moxibustion on learning and memory ability and neuronal injury in the hippocampal CA1 region in vascular dementia rats via the NLRP3/Caspase-1/GSDMD signaling pathway.
Shuaihui QIU ; Qiqi YANG ; Jun YANG ; Kepo WANG ; Xinhua ZHOU ; Weiran LI ; Peiyun WANG ; Fei LI
Chinese Acupuncture & Moxibustion 2025;45(11):1591-1599
OBJECTIVE:
To observe the effect of Huayu Tongluo moxibustion on the NOD-like receptor protein 3 (NLRP3)/cysteine-aspartic acid protease-1 (Caspase-1)/gasdermin D (GSDMD) signaling pathway in rats with vascular dementia (VD), and to explore its mechanism in improving learning and memory ability and alleviating neuronal injury in the hippocampal CA1 region.
METHODS:
A total of 80 SPF-grade male Wistar rats were included. Three rats were excluded based on the Morris water maze test. From the remaining rats, 12 were randomly selected as the sham operation group. The rest were used to establish VD models via modified bilateral common carotid artery ligation. Thirty-six successfully modeled rats were randomly divided into a model group, a medication group, and a moxibustion group, with 12 rats in each group. The medication group was treated with nimodipine solution (12 mg/kg) via gavage. The moxibustion group was treated with Huayu Tongluo moxibustion. The suspended moxibustion was applied at Shenting (GV24) and Dazhui (GV14), and aconite cake-separated moxibustion was applied at Baihui (GV20), with each acupoint treated for 20 min. All treatments were administered once daily for 21 consecutive days. Before and after modeling, and after intervention, the Morris water maze test was used to assess cognitive function. After intervention, the activation and morphology of microglia in the hippocampal CA1 region were observed by immunofluorescence. Ultrastructure of hippocampal CA1 neurons was examined by transmission electron microscopy. Western blot was used to detect protein expression of NLRP3, apoptosis-associated speck-like protein (ASC), Caspase-1, GSDMD, and interleukin-1β (IL-1β) in the hippocampal CA1 region. ELISA was used to detect the content of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) in the hippocampal CA1 region.
RESULTS:
Compared with the sham operation group, the model group showed longer mean escape latency (P<0.01) and fewer platform crossings (P<0.01); the microglial processes in the hippocampal CA1 region were thickened, cytoplasm was hypertrophic, and relative fluorescence intensity of ionized calcium-binding adapter molecule 1 (IBA-1) was increased (P<0.05); the neuronal ultrastructure in the CA1 region was severely damaged, rough endoplasmic reticulum was swollen, mitochondria were deformed and swollen, some cristae were ruptured or dissolved, showing vacuolar changes; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, as well as levels of IL-6, IL-8, and TNF-α were significantly elevated (P<0.001). Compared with the model group, both the medication group and the moxibustion group showed shortened mean escape latency (P<0.01) and increased platform crossings (P<0.01); the microglial processes were thinner, and IBA-1 fluorescence intensity was decreased (P<0.05); the neuronal ultrastructure in the CA1 region was partially improved; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, and levels of IL-6, IL-8, and TNF-α were significantly reduced (P<0.001). Compared with the medication group, the moxibustion group showed shortened mean escape latency (P<0.05) and more platform crossings (P<0.05); the IBA-1 fluorescence intensity was decreased (P<0.05); the neuronal ultrastructure in the CA1 region was improved; the protein expression of NLRP3, ASC, Caspase-1, GSDMD, and IL-1β, as well as levels of IL-6, IL-8, and TNF-α, were significantly lower (P<0.001).
CONCLUSION
The Huayu Tongluo moxibustion could enhance learning and memory abilities in VD rats, inhibit excessive activation of microglia, and alleviate neuronal injury in the hippocampal CA1 region. Its mechanism may involve modulation of the NLRP3/Caspase-1/GSDMD signaling pathway, reduction of inflammatory responses.
Animals
;
Male
;
Dementia, Vascular/physiopathology*
;
Rats
;
Signal Transduction
;
Moxibustion
;
Rats, Wistar
;
CA1 Region, Hippocampal/injuries*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Caspase 1/genetics*
;
Memory
;
Humans
;
Neurons/metabolism*
;
Learning
2.Dorsal CA1 NECTIN3 Reduction Mediates Early-Life Stress-Induced Object Recognition Memory Deficits in Adolescent Female Mice.
Yu-Nu MA ; Chen-Chen ZHANG ; Ya-Xin SUN ; Xiao LIU ; Xue-Xin LI ; Han WANG ; Ting WANG ; Xiao-Dong WANG ; Yun-Ai SU ; Ji-Tao LI ; Tian-Mei SI
Neuroscience Bulletin 2025;41(2):243-260
Early-life stress (ES) leads to cognitive dysfunction in female adolescents, but the underlying neural mechanisms remain elusive. Recent evidence suggests that the cell adhesion molecules NECTIN1 and NECTIN3 play a role in cognition and ES-related cognitive deficits in male rodents. In this study, we aimed to investigate whether and how nectins contribute to ES-induced cognitive dysfunction in female adolescents. Applying the well-established limited bedding and nesting material paradigm, we found that ES impairs recognition memory, suppresses prefrontal NECTIN1 and hippocampal NECTIN3 expression, and upregulates corticotropin-releasing hormone (Crh) and its receptor 1 (Crhr1) mRNA levels in the hippocampus of adolescent female mice. Genetic experiments revealed that the reduction of dorsal CA1 (dCA1) NECTIN3 mediates ES-induced object recognition memory deficits, as knocking down dCA1 NECTIN3 impaired animals' performance in the novel object recognition task, while overexpression of dCA1 NECTIN3 successfully reversed the ES-induced deficits. Notably, prefrontal NECTIN1 knockdown did not result in significant cognitive impairments. Furthermore, acute systemic administration of antalarmin, a CRHR1 antagonist, upregulated hippocampal NECTIN3 levels and rescued object and spatial memory deficits in stressed mice. Our findings underscore the critical role of dCA1 NECTIN3 in mediating ES-induced object recognition memory deficits in adolescent female mice, highlighting it as a potential therapeutic target for stress-related psychiatric disorders in women.
Animals
;
Female
;
Mice
;
CA1 Region, Hippocampal/metabolism*
;
Cell Adhesion Molecules/metabolism*
;
CRF Receptor, Type 1/metabolism*
;
Memory Disorders/etiology*
;
Mice, Inbred C57BL
;
Nectins/genetics*
;
Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors*
;
Recognition, Psychology/physiology*
;
Stress, Psychological/complications*
3.Ventral Hippocampal CA1 GADD45B Regulates Susceptibility to Social Stress by Influencing NMDA Receptor-Mediated Synaptic Plasticity.
Mengbing HUANG ; Jian BAO ; Xiaoqing TAO ; Yifan NIU ; Kaiwei LI ; Ji WANG ; Xiaokang GONG ; Rong YANG ; Yuran GUI ; Hongyan ZHOU ; Yiyuan XIA ; Youhua YANG ; Binlian SUN ; Wei LIU ; Xiji SHU
Neuroscience Bulletin 2025;41(3):406-420
Growth arrest DNA damage-inducible protein 45 β (GADD45B) has been reported to be a regulatory factor for active DNA demethylation and is implicated in the modulation of synaptic plasticity and chronic stress-related psychopathological processes. However, its precise role and mechanism of action in stress susceptibility remain elusive. In this study, we found a significant reduction in GADD45B expression specifically in the ventral, but not the dorsal hippocampal CA1 (dCA1) of stress-susceptible mice. Furthermore, we demonstrated that GADD45B negatively regulates susceptibility to social stress and NMDA receptor-dependent long-term potentiation (LTP) in the ventral hippocampal CA1 (vCA1). Importantly, through pharmacological inhibition using the NMDA receptor antagonist MK801, we provided further evidence supporting the hypothesis that GADD45B potentially modulates susceptibility to social stress by influencing NMDA receptor-mediated LTP. Collectively, these results suggested that modulation of NMDA receptor-mediated synaptic plasticity is a pivotal mechanism underlying the regulation of susceptibility to social stress by GADD45B.
Animals
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
CA1 Region, Hippocampal/drug effects*
;
Male
;
Stress, Psychological/physiopathology*
;
Mice
;
Neuronal Plasticity/drug effects*
;
Long-Term Potentiation/drug effects*
;
Mice, Inbred C57BL
;
Antigens, Differentiation/metabolism*
;
Dizocilpine Maleate/pharmacology*
;
Excitatory Amino Acid Antagonists/pharmacology*
;
GADD45 Proteins
4.Downregulation of Neuralized1 in the Hippocampal CA1 Through Reducing CPEB3 Ubiquitination Mediates Synaptic Plasticity Impairment and Cognitive Deficits in Neuropathic Pain.
Yan GAO ; Yiming QIAO ; Xueli WANG ; Manyi ZHU ; Lili YU ; Haozhuang YUAN ; Liren LI ; Nengwei HU ; Ji-Tian XU
Neuroscience Bulletin 2025;41(12):2233-2253
Neuropathic pain is frequently comorbidity with cognitive deficits. Neuralized1 (Neurl1)-mediated ubiquitination of CPEB3 in the hippocampus is critical in learning and memory. However, the role of Neurl1 in the cognitive impairment in neuropathic pain remains elusive. Herein, we found that lumbar 5 spinal nerve ligation (SNL) in male rat-induced neuropathic pain was followed by learning and memory deficits and LTP impairment in the hippocampus. The Neurl1 expression in the hippocampal CA1 was decreased after SNL. And this decrease paralleled the reduction of ubiquitinated-CPEB3 level and reduced production of GluA1 and GluA2. Overexpression of Neurl1 in the CA1 rescued cognitive deficits and LTP impairment, and reversed the reduction of ubiquitinated-CPEB3 level and the decrease of GluA1 and GluA2 production following SNL. Specific knockdown of Neurl1 or CPEB3 in bilateral hippocampal CA1 in naïve rats resulted in cognitive deficits and impairment of synaptic plasticity. The rescued cognitive function and synaptic plasticity by the treatment of overexpression of Neurl1 before SNL were counteracted by the knockdown of CPEB3 in the CA1. Collectively, the above results suggest that the downregulation of Neurl1 through reducing CPEB3 ubiquitination and, in turn, repressing GluA1 and GluA2 production and mediating synaptic plasticity impairment in hippocampal CA1 leads to the genesis of cognitive deficits in neuropathic pain.
Animals
;
Male
;
Neuralgia/metabolism*
;
Rats
;
Down-Regulation/physiology*
;
Ubiquitination/physiology*
;
Neuronal Plasticity/physiology*
;
Rats, Sprague-Dawley
;
CA1 Region, Hippocampal/metabolism*
;
Cognitive Dysfunction/metabolism*
;
RNA-Binding Proteins/metabolism*
;
Receptors, AMPA/metabolism*
5.Gating of Social Behavior by Inhibitory Inputs from Hippocampal CA1 to Retrosplenial Agranular Cortex.
Yuhan SHI ; Jingjing YAN ; Xiaohong XU ; Zilong QIU
Neuroscience Bulletin 2024;40(11):1635-1648
The retrosplenial cortex has been implicated in processing sensory information and spatial learning, with abnormal neural activity reported in association with psychedelics and in mouse and non-human primate models of autism spectrum disorders (ASDs). The direct role of the retrosplenial cortex in regulating social behaviors remains unclear. In this work, we reveal that neural activity in the retrosplenial agranular cortex (RSA), a subregion of the retrosplenial cortex, is initially activated, then quickly suppressed upon social contact. This up-down phase of RSA neurons is crucial for normal social behaviors. Parvalbumin-positive GABAergic neurons in the hippocampal CA1 region were found to send inhibitory projections to the RSA. Blocking these CA1-RSA inhibitory inputs significantly impaired social behavior. Notably, enhancing the CA1-RSA inhibitory input rescued the social behavior defects in an ASD mouse model. This work suggests a neural mechanism for the salience processing of social behavior and identifies a potential target for ASD intervention using neural modulation approaches.
Animals
;
Social Behavior
;
CA1 Region, Hippocampal/physiology*
;
Mice
;
Male
;
Autism Spectrum Disorder/physiopathology*
;
Mice, Inbred C57BL
;
GABAergic Neurons/drug effects*
;
Neural Inhibition/drug effects*
;
Parvalbumins/metabolism*
;
Neural Pathways/physiology*
;
Cerebral Cortex/physiology*
6.Improved effects of saponins from Panax japonicus on decline of cognitive function in natural aging rats via NLRP3 inflammasome pathway.
Bo RUAN ; Rui WANG ; Yuan-Jian YANG ; Dong-Fan WANG ; Jia-Wen WANG ; Chang-Cheng ZHANG ; Ding YUAN ; Zhi-Yong ZHOU ; Ting WANG
China Journal of Chinese Materia Medica 2019;44(2):344-349
The aim of this paper was to investigate the effect of total saponins from Panax japonicus( SPJ) on cognitive decline of natural aging rats and its mechanism. Thirty male SD rats of eighteen month old were randomly divided into three groups: aged group,10 mg·kg~(-1) SPJ-treated group and 30 mg·kg~(-1) SPJ-treated group. The SPJ-treated groups were given SPJ at the dosages of 10 mg·kg~(-1) and 30 mg·kg~(-1),respectively,from the age of 18 to 24 months. Aged group were lavaged the same amount of saline,10 six-month-old rats were used as control group,with 10 rats in each group. The open field test,novel object recognition and Morris water maze were performed to detect the changes of cognitive function in each group. The changes of synaptic transmission of long-term potentiation( LTP) in hippocampal CA1 region were detected by field potential recording. Western blot was used to detect the protein levels of NLRP3,ASC,caspase-1 and the changes of Glu A1,Glu A2,CAMKⅡ,CREB and phosphorylation of CAMKⅡ,CREB in each group.The results showed that SPJ could improve the decline of cognitive function in aging rats,reduce the damage of LTP in the hippocampal CA1 region of aged rats,and decrease the expression of NLRP3,ASC,caspase-1 in aging rats. At the same time,SPJ could enhance the membrane expression of AMPA receptor( Glu A1 and Glu A2),and increase the expression of p-CAMKⅡand p-CREB in aging rats.SPJ could improve cognitive decline of natural aging rats,and its mechanism may be related to regulating NLRP3 inflammasome,thus regulating the membrane expression of AMPA receptor,and enhancing the expression phosphorylation of CAMKⅡ and CREB.
Aging
;
Animals
;
CA1 Region, Hippocampal
;
physiology
;
Cognition
;
drug effects
;
Inflammasomes
;
metabolism
;
Long-Term Potentiation
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Panax
;
chemistry
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
pharmacology
7.Pretreatment of Populus tomentiglandulosa protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury in gerbils via increasing SODs expressions and maintaining BDNF and IGF-I expressions.
Tae-Kyeong LEE ; Joon Ha PARK ; Ji Hyeon AHN ; Hyunjung KIM ; Minah SONG ; Jae-Chul LEE ; Jong Dai KIM ; Yong Hwan JEON ; Jung Hoon CHOI ; Choong Hyun LEE ; In Koo HWANG ; Bing-Chun YAN ; Moo-Ho WON ; Il Jun KANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):424-434
To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.
Animals
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
CA1 Region, Hippocampal
;
drug effects
;
metabolism
;
Gerbillinae
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Male
;
Neuroprotective Agents
;
administration & dosage
;
Plant Extracts
;
administration & dosage
;
Populus
;
chemistry
;
Pyramidal Cells
;
drug effects
;
metabolism
;
Reperfusion Injury
;
drug therapy
;
genetics
;
metabolism
;
Superoxide Dismutase
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
8.G protein-coupled estrogen receptor alleviates cerebral ischemia-reperfusion injury through inhibiting endoplasmic reticulum stress.
Zi-Wei HAN ; Li-Cang ZHU ; Yue-Chen CHANG ; Ying ZHOU ; Jia-An ZONG ; Ke-Tao MA ; Jun-Qiang SI ; Li LI
Acta Physiologica Sinica 2019;71(4):527-536
The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.
Animals
;
Apoptosis
;
Brain Ischemia
;
CA1 Region, Hippocampal
;
cytology
;
Caspase 12
;
metabolism
;
Caspase 3
;
metabolism
;
Endoplasmic Reticulum Stress
;
Female
;
Heat-Shock Proteins
;
metabolism
;
Neurons
;
cytology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Estrogen
;
physiology
;
Receptors, G-Protein-Coupled
;
agonists
;
Reperfusion Injury
;
Transcription Factor CHOP
;
metabolism
9.Effect of Yangxue Qingnao Granule on the Expression of CD11b in CA1 Region of Hippocampus of Vascular Dementia Rats.
Jing LI ; Yuan-yuan MA ; Bin LIU ; Wen-jing MAO ; Jin-xia ZHANG ; Shi-ying LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):619-623
OBJECTIVETo observe the effect of Yangxue Qingnao Granule (YQG) on the expression of CD11b in CA1 region of hippocampus of vascular dementia rats, and to explore its regulation on microglias.
METHODSTotally 144 SD rats were randomly divided into the sham-operation group, the vascular dementia model group (model), and the YQG treated group (treated). The vascular dementia rat model was prepared by modified Pulsinelli's four-vessel occlusion. Rats in the sham-operation group and the model group were administered with normal saline -(at the daily dose of 10 mL/kg) by gastrogavage, while those in the treated group were administered with YQG (0.32 g/mL, at the daily dose of 10 mL/kg) by gastrogavage. All administration was performed once per day for 8 successive weeks. The expression of CD11b in CA1 region of hippocampus of vascular dementia rats was detected at week 1, 2, 4, and 8, respectively.
RESULTSCompared with the sham-operation group, the expression of CD11b in CA1 region of hippocampus of vascular dementia rats were significantly enhanced in the model group at each time point (P < 0.01). Compared with the model group, the expression of CD11b in CA1 region of hippocampus of vascular dementia rats significantly decreased in the treated group at each time point (P < 0.01), especially at week 2.
CONCLUSIONObvious activation and proliferation of microglias could be seen in CA1 region of hippocampus of vascular dementia rats, and YQG could inhibit activation and proliferation of microglias.
Animals ; CA1 Region, Hippocampal ; drug effects ; metabolism ; CD11b Antigen ; metabolism ; Dementia, Vascular ; drug therapy ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; Microglia ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley
10.Effect of Qidan Granule on PMC Derived Peptide Content and Structure of Hippocampal CA1 Region in Microwave Radiated Rats.
Lan-fang GUAN ; Ya-wei LI ; Jun-jie XU ; Xiu-hong ZHONG ; Hong ZHANG ; Wen-he ZHU ; Shi-jie LV
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):471-475
OBJECTIVETo explore the protection of high intensity microwave radiation on hypothalamo-pituitary-adrenal axis (HPAA) activity and hippocampal CA1 structure in rats and the protectiveeffect of Qindan Granule (QG) on radiation injured rats.
METHODSTotally 48 Wistar rats were randomlydivided into 8 groups, i.e., the normal control group, post-radiation day 1, 7, and 10 groups, 7 and 10days prevention groups, day 7 and 10 treatment groups, 6 in each group. Rats in prevention groups wererespectively administered with QG liquid (1 mL/100 g, 4. 75 g crude drugs) for 7 days and 10 days bygastrogavage and then microwave radiation. Then preventive effect for radiation injury was statisticallycalculated with the normal control group and the post-radiation day 1 group. Rats in treatment groupswere firstly irradiated, and then administered with QG liquid (1 mL/100 g, 4.75 g crude drugs). Finally preventive effect for radiation injury was statistically calculated with the normal control group, post-radiation day 7 and 10 groups. Contents of corticotrophin releasing hormone (CRH), beta endorphin (beta-EP), adrenocorticotropic hormone (ACTH), and heat shock protein 70 (HSP70) were detected. Morphological changes and structure of hippocampal CA1 region were observed under light microscope.
RESULTSCompared with the normal control group, contents of CRH and beta-EP significantly decreased in each radiation group. Serum contents of ACTH and beta-EP significantly increased in post-radiation day 1 and 7 groups (P < 0.05). Compared with radiation groups, beta-EP content in serum and pituitary significantly increased, and serum ACTH content significantly decreased in prevention groups (P < 0.05). Pituitary contents of CRH and beta-EP significantly increased in prevention groups. Serum contents of ACTH, beta-EP, and HSP70 were significantly lower in day 7 treatment group than post-radiation day 7 group (P < 0.05). Morphological results showed that pyramidal neurons in the hippocampal CA1 region arranged in disorder, with swollen cells, shrunken and condensed nucleus, dark dyeing cytoplasm, unclear structure. Vessels in partial regions were dilated with static blood; tissues were swollen and sparse. In prevention and treatment groups pathological damage of hippocampal CA1 region was obviously attenuated; neurons were arranged more regularly; swollen, pycnotic, or deleted neuron number were decreased; vascular dilatation and congestion was lessened.
CONCLUSIONQG could affect HPAA function and activity of high intensity microwave radiated rats, showing certain preventive and therapeutic effects of microwave radiated rats by adjusting synthesis and release of partial bioactive peptides and hormones in HPAA, improving pathological injury in hippocampal CA1 region.
Adrenocorticotropic Hormone ; blood ; Animals ; CA1 Region, Hippocampal ; drug effects ; pathology ; radiation effects ; Corticotropin-Releasing Hormone ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; HSP70 Heat-Shock Proteins ; blood ; Hypothalamo-Hypophyseal System ; drug effects ; radiation effects ; Microwaves ; adverse effects ; Pituitary-Adrenal System ; drug effects ; radiation effects ; Random Allocation ; Rats ; Rats, Wistar ; beta-Endorphin ; blood ; metabolism

Result Analysis
Print
Save
E-mail