1.Palliative Care and Hospice for Heart Failure Patients: Position Statement From the Korean Society of Heart Failure
Seung-Mok LEE ; Hae-Young LEE ; Shin Hye YOO ; Hyun-Jai CHO ; Jong-Chan YOUN ; Seong-Mi PARK ; Jin-Ok JEONG ; Min-Seok KIM ; Chi Young SHIM ; Jin Joo PARK ; Kye Hun KIM ; Eung Ju KIM ; Jeong Hoon YANG ; Jae Yeong CHO ; Sang-Ho JO ; Kyung-Kuk HWANG ; Ju-Hee LEE ; In-Cheol KIM ; Gi Beom KIM ; Jung Hyun CHOI ; Sung-Hee SHIN ; Wook-Jin CHUNG ; Seok-Min KANG ; Myeong Chan CHO ; Dae-Gyun PARK ; Byung-Su YOO
International Journal of Heart Failure 2025;7(1):32-46
Heart failure (HF) is a major cause of mortality and morbidity in South Korea, imposing substantial physical, emotional, and financial burdens on patients and society. Despite the high burden of symptom and complex care needs of HF patients, palliative care and hospice services remain underutilized in South Korea due to cultural, institutional, and knowledge-related barriers. This position statement from the Korean Society of Heart Failure emphasizes the need for integrating palliative and hospice care into HF management to improve quality of life and support holistic care for patients and their families. By clarifying the role of palliative care in HF and proposing practical referral criteria, this position statement aims to bridge the gap between HF and palliative care services in South Korea, ultimately improving patient-centered outcomes and aligning treatment with the goals and values of HF patients.
2.Phytotherapeutic BS012 and Its Active Component Ameliorate Allergic Asthma via Inhibition of Th2-Mediated Immune Response and Apoptosis
Siqi ZHANG ; Joonki KIM ; Gakyung LEE ; Hong Ryul AHN ; Yeo Eun KIM ; Hee Ju KIM ; Jae Sik YU ; Miso PARK ; Keon Wook KANG ; Hocheol KIM ; Byung Hwa JUNG ; Sung Won KWON ; Dae Sik JANG ; Hyun Ok YANG
Biomolecules & Therapeutics 2024;32(6):744-758
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumininduced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
3.Phytotherapeutic BS012 and Its Active Component Ameliorate Allergic Asthma via Inhibition of Th2-Mediated Immune Response and Apoptosis
Siqi ZHANG ; Joonki KIM ; Gakyung LEE ; Hong Ryul AHN ; Yeo Eun KIM ; Hee Ju KIM ; Jae Sik YU ; Miso PARK ; Keon Wook KANG ; Hocheol KIM ; Byung Hwa JUNG ; Sung Won KWON ; Dae Sik JANG ; Hyun Ok YANG
Biomolecules & Therapeutics 2024;32(6):744-758
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumininduced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
4.Phytotherapeutic BS012 and Its Active Component Ameliorate Allergic Asthma via Inhibition of Th2-Mediated Immune Response and Apoptosis
Siqi ZHANG ; Joonki KIM ; Gakyung LEE ; Hong Ryul AHN ; Yeo Eun KIM ; Hee Ju KIM ; Jae Sik YU ; Miso PARK ; Keon Wook KANG ; Hocheol KIM ; Byung Hwa JUNG ; Sung Won KWON ; Dae Sik JANG ; Hyun Ok YANG
Biomolecules & Therapeutics 2024;32(6):744-758
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumininduced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
5.2023 Korean Society of Echocardiography position paper for the diagnosis and management of valvular heart disease, part II: mitral and tricuspid valve disease
Chi Young SHIM ; Eun Kyoung KIM ; Dong‑Hyuk CHO ; Jun‑Bean PARK ; Jeong‑Sook SEO ; Jung‑Woo SON ; In‑Cheol KIM ; Sang‑Hyun LEE ; Ran HEO ; Hyun‑Jung LEE ; Sahmin LEE ; Byung Joo SUN ; Se‑Jung YOON ; Sun Hwa LEE ; Hyung Yoon KIM ; Hyue Mee KIM ; Jae‑Hyeong PARK ; Geu‑Ru HONG ; Hae Ok JUNG ; Yong‑Jin KIM ; Kye Hun KIM ; Duk‑Hyun KANG ; Jong‑Won HA ; Hyungseop KIM ;
Journal of Cardiovascular Imaging 2024;32(1):10-
This manuscript represents the official position of the Korean Society of Echocardiography on valvular heart diseases.This position paper focuses on the diagnosis and management of valvular heart diseases with referring to the guide‑ lines recently published by the American College of Cardiology/American Heart Association and the European Society of Cardiology. The committee sought to reflect national data on the topic of valvular heart diseases published to date through a systematic literature search based on validity and relevance. In the part II of this article, we intend to pre‑ sent recommendations for diagnosis and treatment of mitral valve disease and tricuspid valve disease.
6.Transradial Versus Transfemoral Access for Bifurcation Percutaneous Coronary Intervention Using SecondGeneration Drug-Eluting Stent
Jung-Hee LEE ; Young Jin YOUN ; Ho Sung JEON ; Jun-Won LEE ; Sung Gyun AHN ; Junghan YOON ; Hyeon-Cheol GWON ; Young Bin SONG ; Ki Hong CHOI ; Hyo-Soo KIM ; Woo Jung CHUN ; Seung-Ho HUR ; Chang-Wook NAM ; Yun-Kyeong CHO ; Seung Hwan HAN ; Seung-Woon RHA ; In-Ho CHAE ; Jin-Ok JEONG ; Jung Ho HEO ; Do-Sun LIM ; Jong-Seon PARK ; Myeong-Ki HONG ; Joon-Hyung DOH ; Kwang Soo CHA ; Doo-Il KIM ; Sang Yeub LEE ; Kiyuk CHANG ; Byung-Hee HWANG ; So-Yeon CHOI ; Myung Ho JEONG ; Hyun-Jong LEE
Journal of Korean Medical Science 2024;39(10):e111-
Background:
The benefits of transradial access (TRA) over transfemoral access (TFA) for bifurcation percutaneous coronary intervention (PCI) are uncertain because of the limited availability of device selection. This study aimed to compare the procedural differences and the in-hospital and long-term outcomes of TRA and TFA for bifurcation PCI using secondgeneration drug-eluting stents (DESs).
Methods:
Based on data from the Coronary Bifurcation Stenting Registry III, a retrospective registry of 2,648 patients undergoing bifurcation PCI with second-generation DES from 21 centers in South Korea, patients were categorized into the TRA group (n = 1,507) or the TFA group (n = 1,141). After propensity score matching (PSM), procedural differences, in-hospital outcomes, and device-oriented composite outcomes (DOCOs; a composite of cardiac death, target vessel-related myocardial infarction, and target lesion revascularization) were compared between the two groups (772 matched patients each group).
Results:
Despite well-balanced baseline clinical and lesion characteristics after PSM, the use of the two-stent strategy (14.2% vs. 23.7%, P = 0.001) and the incidence of in-hospital adverse outcomes, primarily driven by access site complications (2.2% vs. 4.4%, P = 0.015), were significantly lower in the TRA group than in the TFA group. At the 5-year follow-up, the incidence of DOCOs was similar between the groups (6.3% vs. 7.1%, P = 0.639).
Conclusion
The findings suggested that TRA may be safer than TFA for bifurcation PCI using second-generation DESs. Despite differences in treatment strategy, TRA was associated with similar long-term clinical outcomes as those of TFA. Therefore, TRA might be the preferred access for bifurcation PCI using second-generation DES.
7.Value of Fecal Calprotectin Measurement During the Initial Period of Therapeutic Anti-Tubercular Trial
Hyeong Ho JO ; Eun Young KIM ; Jin Tae JUNG ; Joong Goo KWON ; Eun Soo KIM ; Hyun Seok LEE ; Yoo Jin LEE ; Kyeong Ok KIM ; Byung Ik JANG ;
Clinical Endoscopy 2022;55(2):256-262
Background/Aims:
The diagnosis of intestinal tuberculosis (Itbc) is often challenging. Therapeutic anti-tubercular trial (TATT) is sometimes used for the diagnosis of Itbc. We aimed to evaluate the changing pattern of fecal calprotectin (FC) levels during TATT in patients with Itbc.
Methods:
A retrospective review was performed on the data of 39 patients who underwent TATT between September 2015 and November 2018 in five university hospitals in Daegu, South Korea. The analysis was performed for 33 patients with serial FC measurement reports.
Results:
The mean age of the participants was 48.8 years. The final diagnosis of Itbc was confirmed in 30 patients based on complete mucosal healing on follow-up colonoscopy performed after 2 months of TATT. Before starting TATT, the mean FC level of the Itbc patients was 170.2 μg/g (range, 11.5-646.5). It dropped to 25.4 μg/g (range, 11.5-75.3) and then 23.3 μg/g (range, 11.5-172.2) after one and two months of TATT, respectively. The difference in mean FC before and one month after TATT was statistically significant (p<0.001), and FC levels decreased to below 100 μg/g in all patients after one month of TATT.
Conclusions
All Itbc patients showed FC decline after only 1 month of TATT, and this finding correlated with complete mucosal healing in the follow-up colonoscopy after 2 months of TATT.
8.The Senolytic Drug JQ1 Removes Senescent Cells via Ferroptosis
Seokhyeong GO ; Mikyung KANG ; Sung Pil KWON ; Mungyo JUNG ; Ok Hee JEON ; Byung-Soo KIM
Tissue Engineering and Regenerative Medicine 2021;18(5):841-850
BACKGROUND:
Ferroptosis is an iron-dependent, non-apoptotic programmed cell death. Cellular senescence contributes to aging and various age-related diseases through the expression of a senescence-associated secretory phenotype (SASP). Senescent cells are often resistant to ferroptosis via increased ferritin and impaired ferritinophagy. In this study, we investigated whether treatment with JQ1 could remove senescent cells by inducing ferroptosis.
METHODS:
Senescence of human dermal fibroblasts was induced in vitro by treating the cells with bleomycin. The senolytic effects of JQ1 were evaluated using a SA-β gal assay, annexin V analysis, cell counting kit-8 assay, and qRT-PCR. Ferroptosis following JQ1 treatment was evaluated with qRT-PCR and BODIPY staining.
RESULTS:
At a certain range of JQ1 concentrations, JQ1 treatment reduced the viability of bleomycin-treated cells (senescent cells) but did not reduce that of untreated cells (non-senescent cells), indicating that JQ1 treatment can selectively eliminate senescent cells. JQ1 treatment also decreased SASP expression only in senescent cells. Subsequently, JQ1 treatment reduced the expression of ferroptosis-resistance genes in senescent cells. JQ1 treatment induced lipid peroxidation in senescent cells but not in non-senescent cells.
CONCLUSION
The data indicate that JQ1 can eliminate senescent cells via ferroptosis. This study suggests ferroptosis as a new mechanism of senolytic therapy.
9.The Senolytic Drug JQ1 Removes Senescent Cells via Ferroptosis
Seokhyeong GO ; Mikyung KANG ; Sung Pil KWON ; Mungyo JUNG ; Ok Hee JEON ; Byung-Soo KIM
Tissue Engineering and Regenerative Medicine 2021;18(5):841-850
BACKGROUND:
Ferroptosis is an iron-dependent, non-apoptotic programmed cell death. Cellular senescence contributes to aging and various age-related diseases through the expression of a senescence-associated secretory phenotype (SASP). Senescent cells are often resistant to ferroptosis via increased ferritin and impaired ferritinophagy. In this study, we investigated whether treatment with JQ1 could remove senescent cells by inducing ferroptosis.
METHODS:
Senescence of human dermal fibroblasts was induced in vitro by treating the cells with bleomycin. The senolytic effects of JQ1 were evaluated using a SA-β gal assay, annexin V analysis, cell counting kit-8 assay, and qRT-PCR. Ferroptosis following JQ1 treatment was evaluated with qRT-PCR and BODIPY staining.
RESULTS:
At a certain range of JQ1 concentrations, JQ1 treatment reduced the viability of bleomycin-treated cells (senescent cells) but did not reduce that of untreated cells (non-senescent cells), indicating that JQ1 treatment can selectively eliminate senescent cells. JQ1 treatment also decreased SASP expression only in senescent cells. Subsequently, JQ1 treatment reduced the expression of ferroptosis-resistance genes in senescent cells. JQ1 treatment induced lipid peroxidation in senescent cells but not in non-senescent cells.
CONCLUSION
The data indicate that JQ1 can eliminate senescent cells via ferroptosis. This study suggests ferroptosis as a new mechanism of senolytic therapy.
10.Erratum: Correction of Affiliations in the Article “Clinical Characteristics and Treatment Outcomes in Children, Adolescents, and Young-adults with Hodgkin's Lymphoma: a KPHOG Lymphoma Working-party, Multicenter, Retrospective Study”
Jae Min LEE ; Jung Yoon CHOI ; Kyung Taek HONG ; Hyoung Jin KANG ; Hee Young SHIN ; Hee Jo BAEK ; Hoon KOOK ; Seongkoo KIM ; Jae Wook LEE ; Nack-Gyun CHUNG ; Bin CHO ; Seok-Goo CHO ; Kyung Mi PARK ; Eu Jeen YANG ; Young Tak LIM ; Jin Kyung SUH ; Sung Han KANG ; Hyery KIM ; Kyung-Nam KOH ; Ho Joon IM ; Jong Jin SEO ; Hee Won CHO ; Hee Young JU ; Ji Won LEE ; Keon Hee YOO ; Ki Woong SUNG ; Hong Hoe KOO ; Kyung Duk PARK ; Jeong Ok HAH ; Min Kyoung KIM ; Jung Woo HAN ; Seung Min HAHN ; Chuhl Joo LYU ; Ye Jee SHIM ; Heung Sik KIM ; Young Rok DO ; Jae Won YOO ; Yeon Jung LIM ; In-Sang JEON ; Hee won CHUEH ; Sung Yong OH ; Hyoung Soo CHOI ; Jun Eun PARK ; Jun Ah LEE ; Hyeon Jin PARK ; Byung-Kiu PARK ; Soon Ki KIM ; Jae Young LIM ; Eun Sil PARK ; Sang Kyu PARK ; Eun Jin CHOI ; Young Bae CHOI ; Jong Hyung YOON ;
Journal of Korean Medical Science 2021;36(4):e37-

Result Analysis
Print
Save
E-mail