1.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*
2.Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry.
Ya-Lin LIU ; Jian-Jun XU ; Lin-Ran HAN ; Xiang-Fei LIU ; Mu-Hai LIN ; Yun WANG ; Zhe XIAO ; Yun-Ke HUANG ; Ping REN ; Xi HUANG
Chinese journal of integrative medicine 2023;29(6):490-499
OBJECTIVE:
To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms.
METHODS:
Totally 120 Spraque-Dawley rats were randomly divided into 5-8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD).
RESULTS:
MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus-thalamus-basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD.
CONCLUSIONS
MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.
Rats
;
Mice
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Ghrelin/metabolism*
;
Antidepressive Agents/therapeutic use*
;
Hippocampus
;
Stress, Psychological
;
Mammals/metabolism*
3.Psilocybin facilitates fear extinction in mice by promoting hippocampal neuroplasticity.
Yingjie DU ; Yunfeng LI ; Xiangting ZHAO ; Yishan YAO ; Bin WANG ; Liming ZHANG ; Guyan WANG
Chinese Medical Journal 2023;136(24):2983-2992
BACKGROUND:
Posttraumatic stress disorder (PTSD) and depression are highly comorbid. Psilocybin exerts substantial therapeutic effects on depression by promoting neuroplasticity. Fear extinction is a key process in the mechanism of first-line exposure-based therapies for PTSD. We hypothesized that psilocybin would facilitate fear extinction by promoting hippocampal neuroplasticity.
METHODS:
First, we assessed the effects of psilocybin on percentage of freezing time in an auditory cued fear conditioning (FC) and fear extinction paradigm in mice. Psilocybin was administered 30 min before extinction training. Fear extinction testing was performed on the first day; fear extinction retrieval and fear renewal were tested on the sixth and seventh days, respectively. Furthermore, we verified the effect of psilocybin on hippocampal neuroplasticity using Golgi staining for the dendritic complexity and spine density, Western blotting for the protein levels of brain derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR), and immunofluorescence staining for the numbers of doublecortin (DCX)- and bromodeoxyuridine (BrdU)-positive cells.
RESULTS:
A single dose of psilocybin (2.5 mg/kg, i.p.) reduced the increase in the percentage of freezing time induced by FC at 24 h, 6th day and 7th day after administration. In terms of structural neuroplasticity, psilocybin rescued the decrease in hippocampal dendritic complexity and spine density induced by FC; in terms of neuroplasticity related proteins, psilocybin rescued the decrease in the protein levels of hippocampal BDNF and mTOR induced by FC; in terms of neurogenesis, psilocybin rescued the decrease in the numbers of DCX- and BrdU-positive cells in the hippocampal dentate gyrus induced by FC.
CONCLUSIONS
A single dose of psilocybin facilitated rapid and sustained fear extinction; this effect might be partially mediated by the promotion of hippocampal neuroplasticity. This study indicates that psilocybin may be a useful adjunct to exposure-based therapies for PTSD and other mental disorders characterized by failure of fear extinction.
Humans
;
Mice
;
Animals
;
Psilocybin/metabolism*
;
Fear
;
Extinction, Psychological
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Bromodeoxyuridine/pharmacology*
;
Hippocampus/metabolism*
;
Neuronal Plasticity
;
TOR Serine-Threonine Kinases/metabolism*
4.Neuroprotective effect and mechanism of Zuogui Jiangtang Jieyu Formula on diabetes mellitus complicated with depression model rats based on CX3CL1-CX3CR1 axis.
Ping LI ; Yang LIU ; Man-Shu ZOU ; Ting-Ting WANG ; Hai-Peng GUO ; Ting-Ting REN ; Ying HE ; Hua WANG ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2023;48(21):5822-5829
Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.
Rats
;
Animals
;
Depression/drug therapy*
;
Brain-Derived Neurotrophic Factor
;
Neuroprotective Agents
;
Tumor Necrosis Factor-alpha/metabolism*
;
Neuroinflammatory Diseases
;
Diabetes Mellitus
;
Receptors, Glutamate
;
CX3C Chemokine Receptor 1/genetics*
5.Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain.
Hang XIAN ; Huan GUO ; Yuan-Ying LIU ; Jian-Lei ZHANG ; Wen-Chao HU ; Ming-Jun YU ; Rui ZHAO ; Rou-Gang XIE ; Hang ZHANG ; Rui CONG
Neuroscience Bulletin 2023;39(12):1789-1806
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Humans
;
Mice
;
Animals
;
Hyperalgesia/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Hypothermia/metabolism*
;
Neuralgia
;
Brachial Plexus/injuries*
;
Edema/metabolism*
6.Effect of Tongdu Tiaoshen acupuncture on CREB/BDNF/TrkB signaling pathway of hippocampus in rats with post-stroke depression.
Pei-Yang SUN ; Hao-Ran CHU ; Nan LI ; Hui LIU ; Shi-Yang LIU ; Fang ZHANG ; Wei LI ; Shui-Rou CHU ; Pei-Fang LI
Chinese Acupuncture & Moxibustion 2022;42(8):907-913
OBJECTIVE:
To observe the regulative effect of Tongdu Tiaoshen acupuncture on the depression-like behavior and cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/tyrosine protein kinase B (TrkB) signaling pathway of hippocampus in rats with post-stroke depression (PSD), and to explore its possible mechanism on improving PSD.
METHODS:
A total of 36 SPF SD rats were randomized into a sham operation group, a model group and a Tongdu Tiaoshen group, 12 rats in each group. The compound method of Zea Longa suture-occlusion and chronic unpredictable mild stress (CUMS) was used to establish the PSD model in rats of the model group and the Tongdu Tiaoshen group. On the 4th day after modeling, acupuncture was applied at "Dazhui" (GV 14), "Shuigou" (GV 26), "Baihui" (GV 20) and "Shenting" (GV 24) in the Tongdu Tiaoshen group, 40 min every time, once a day, 6 times a week for 4 weeks consecutively. On the 2nd day after PSD modeling and after 4-week intervention, Zea Longa neurobehavioral score was evaluated, sucrose water consumption test and open-field test were performed; biochemical method was used to detect the SOD, CAT activity and MDA level in hippocampal CA1 area; ELISA method was used to detect the serum level of BDNF; real-time PCR was used to detect the mRNA expression of BDNF, TrkB and CREB in hippocampal CA1 area; Western blot was used to detect the protein expression of BDNF, TrkB, CREB and p-CREB in hippocampal CA1 area.
RESULTS:
Compared with the sham operation group, Zea Longa neurobehavioral scores were increased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were decreased after modeling and intervention in the model group and after modeling in the Tongdu Tiaoshen group (P<0.05). Compared with the model group, Zea Longa neurobehavioral score was decreased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were increased after intervention in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were decreased (P<0.05), MDA level in hippocampal CA1 area was increased in the model group (P<0.05); compared with the model group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were increased (P<0.05), MDA level was decreased in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the mRNA expression of BDNF, TrkB and CREB as well as the protein expression of BDNF, TrkB, CREB and p-CREB were decreased in hippocampal CA1 area in the model group (P<0.05); compared with the model group, the mRNA expression of BDNF, TrkB and CREB, the protein expression of BDNF, TrkB and p-CREB as well as the ratio of p-CREB/CREB were increased in the Tongdu Tiaoshen group (P<0.05).
CONCLUSION
Tongdu Tiaoshen acupuncture can improve the depression-like behavior in PSD rats, the mechanism may be related to the inhibition of oxidative stress in hippocampal tissues and the enhanced activity of CREB/BDNF/TrkB signaling pathway.
Acupuncture Therapy
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Depression/therapy*
;
Hippocampus/metabolism*
;
RNA, Messenger
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Stroke/complications*
;
Sucrose
;
Superoxide Dismutase
7.Analgesic effect and mechanism of electroacupuncture on SNI rats based on microglia-BDNF-neuron signal.
Dian-Ping YANG ; Ying ZHANG ; Pei-Min LIN ; An-Qiong MAO ; Qing LIU
Chinese Acupuncture & Moxibustion 2022;42(9):1029-1036
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Huantiao" (GB 30) and "Weizhong" (BL 40) on the activation of glial cells, the expression of brain-derived neurotrophic factor (BDNF), excitability and the number of dendritic spines of neurons in the spinal dorsal horn in rats with spared nerve injury (SNI) of sciatic nerve, and to explore the analgesic mechanism of EA on SNI.
METHODS:
PartⅠ: Sixty SD rats were randomly divided into a sham operation group, a model group, an EA group and a sham EA group, 15 rats in each group. Except the sham operation group, the SNI rat model was established in the remaining groups. The rats in the sham operation group were only treated with incision without damaging the nerve. The rats in the EA group were treated with EA at "Huantiao" (GB 30) and "Weizhong" (BL 40) on the affected side, continuous wave, frequency of 2 Hz, current intensity of 1 mA, 30 minutes each time, once a day, for 14 days. The rats in the sham EA group were treated with EA at points 0.5 cm next to "Huantiao" (GB 30) and "Weizhong" (BL 40) on the affected side; the manipulation, EA parameters and treatment course were the same as the EA group. The latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex were detected 1 day before modeling and 3, 7 and 14 days after modeling. Fourteen days after modeling, Western blot was used to detect the protein expressions of ionized binding adapter junction protein 1 (Iba-1), glial fibrillary acidic protein (GFAP), BDNF and c-Fos in the spinal dorsal horn; the expressions of Iba-1 and c-Fos proteins in the spinal dorsal horn were detected by immunofluorescence staining; immunohistochemical method was used to detect the expression of GFAP protein in the spinal dorsal horn; Golgi staining was used to detect the number of dendritic spines in spinal dorsal horn neurons. PartⅡ: Thirty SD rats were randomly divided into a control group, a BDNF group and a BDNF+anti-TrkB group, 10 rats in each group. The control group was treated with intrathecal injection of 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and dimethyl sulfoxide (DMSO); the BDNF group was treated with intrathecal injection of 10 μg rat recombinant BDNF dissolved in 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and DMSO; the BDNF+anti-TrkB group was treated with intrathecal injection of 10 μg rat recombinant BDNF and 30 μg tyrosine kinase receptor B (TrkB) antibody dissolved in 10 μL mixture with 1︰1 of 0.9% sodium chloride solution and DMSO. The threshold of mechanical foot retraction reflex was detected 1 day before intrathecal injection and 1, 3 and 7 days after injection. Seven days after injection, the expression of c-Fos protein in the spinal dorsal horn was detected by Western blot and immunofluorescence staining.
RESULTS:
PartⅠ: Compared with the sham operation group, 3, 7 and 14 days after modeling, the latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex in the model group were decreased (P<0.05); 7 and 14 days after modeling, compared with the model group, the latency of thermal foot contraction reflex and the threshold of mechanical foot contraction reflex in the EA group were increased (P<0.05). The expressions of Iba-1, GFAP, BDNF, c-Fos proteins and the number of neuronal dendritic spines in the spinal dorsal horn in the model group were higher than those in the sham operation group (P<0.05); the expressions of Iba-1, BDNF, c-Fos proteins and the number of neuronal dendritic spines in the EA group were lower than those in the model group (P<0.05). PartⅡ: 3 and 7 days after intrathecal injection, the threshold of mechanical foot retraction reflex in the BDNF group was lower than that in the control group (P<0.05); the threshold of mechanical foot retraction reflex in the BDNF+anti-TrkB group was higher than that in the BDNF group (P<0.05). The expression of c-Fos protein in spinal dorsal horn in the BDNF group was higher than that in the control group (P<0.05); the expression of c-Fos protein in spinal dorsal horn in the BDNF+anti-TrkB group was lower than that in the BDNF group (P<0.05).
CONCLUSION
The analgesic effect of EA at "Huantiao" (GB 30) and "Weizhong" (BL 40) on SNI rats may be related to inhibiting the activation of microglia in the dorsal horn of the spinal cord, thereby blocking the signal of microglia-BDNF-neuron, and finally reducing the excitability of neurons.
Analgesics
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Dimethyl Sulfoxide/metabolism*
;
Electroacupuncture
;
Microglia
;
Neuralgia/therapy*
;
Neurons
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride/metabolism*
;
Spinal Cord/metabolism*
8.Effect of Danzhi Xiaoyao Powder on behavior and mitochondrial morphology and function of anxiety model rats.
An-Ran ZHAO ; Si-Qi WANG ; Zhen-Wu ZHAO ; Jian-You GUO
China Journal of Chinese Materia Medica 2022;47(20):5584-5590
Danzhi Xiaoyao Powder is a classical prescription for anxiety. This study aims to analyze the effect of this medicine on mitochondrial morphology and function of anxiety rats and explore the mechanism of it against anxiety. Specifically, uncertain empty bottle drinking water stimulation(21 days) was employed to induce anxiety in rats. The elevated plus-maze test and open field test were respectively performed on the 7 th, the 14 th, and the 21 st days of the stimulation, so as to detect the anxiety-related protein index brain-derived neurotrophic factor(BDNF) and evaluate the anxiety level of animals. On this basis, the effect of this prescription on anxiety rats was preliminarily evaluated. After the behavioral test on the 21 st day, rats were killed and the brain tissues were separated for the observation of the mitochondrial morphology and the determination of mitochondrial function-related indicators and the adenosine 5'-monophosphate-activated protein kinase(AMPK) level. The results showed that Danzhi Xiaoxiao Powder could alleviate the anxiety-like behavior of rats, significantly increase the percentage of time in open arm in elevated plus-maze test and the ration of activity time in the central area of the field, dose-dependently raise the activity levels of respiratory chain complex Ⅰ,Ⅱ,Ⅲ and Ⅳ and the adenosine triphosphate(ATP) content, and elevate the levels of BDNF and phosphorylated AMPK(p-AMPK). Clear structure and intact morphology of mitochondrial cristae in medial prefrontal cortex cells and amygdala were observed in the Danzhi Xiaoyao Powder group. In summary, Danzhi Xiaoyao Powder exerts therapeutic effect on anxiety, and the mechanism is the likelihood that p-AMPK protects the structure and maintains the function of mitochondria.
Rats
;
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Powders
;
AMP-Activated Protein Kinases
;
Anxiety/drug therapy*
;
Mitochondria
9.Homocysteine-Induced Disturbances in DNA Methylation Contribute to Development of Stress-Associated Cognitive Decline in Rats.
Shi-Da WANG ; Xue WANG ; Yun ZHAO ; Bing-Hua XUE ; Xiao-Tian WANG ; Yu-Xin CHEN ; Zi-Qian ZHANG ; Ying-Rui TIAN ; Fang XIE ; Ling-Jia QIAN
Neuroscience Bulletin 2022;38(8):887-900
Chronic stress is generally accepted as the main risk factor in the development of cognitive decline; however, the underlying mechanisms remain unclear. Previous data have demonstrated that the levels of homocysteine (Hcy) are significantly elevated in the plasma of stressed animals, which suggests that Hcy is associated with stress and cognitive decline. To test this hypothesis, we analyzed the cognitive function, plasma concentrations of Hcy, and brain-derived neurotropic factor (BDNF) levels in rats undergoing chronic unpredicted mild stress (CUMS). The results showed that decreased cognitive behavioral performance and decreased BDNF transcription and protein expression were correlated with hyperhomocysteinemia (HHcy) levels in stressed rats. Diet-induced HHcy mimicked the cognitive decline and BDNF downregulation in the same manner as CUMS, while Hcy reduction (by means of vitamin B complex supplements) alleviated the cognitive deficits and BDNF reduction in CUMS rats. Furthermore, we also found that both stress and HHcy disturbed the DNA methylation process in the brain and induced DNA hypermethylation in the BDNF promoter. In contrast, control of Hcy blocked BDNF promoter methylation and upregulated BDNF levels in the brain. These results imply the possibility of a causal role of Hcy in stress-induced cognitive decline. We also used ten-eleven translocation (TET1), an enzyme that induces DNA demethylation, to verify the involvement of Hcy and DNA methylation in the regulation of BDNF expression and the development of stress-related cognitive decline. The data showed that TET1-expressing viral injection into the hippocampus inhibited BDNF promoter methylation and significantly mitigated the cognitive decline in HHcy rats. Taken together, novel evidence from the present study suggests that Hcy is likely involved in chronic stress-induced BDNF reduction and related cognitive deficits. In addition, the negative side-effects of HHcy may be associated with Hcy-induced DNA hypermethylation in the BDNF promoter. The results also suggest the possibility of Hcy as a target for therapy and the potential value of vitamin B intake in preventing stress-induced cognitive decline.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Cognitive Dysfunction/complications*
;
DNA Methylation
;
Homocysteine/metabolism*
;
Hyperhomocysteinemia/metabolism*
;
Rats
;
Stress, Psychological/physiopathology*
10.Release of Endogenous Brain-derived Neurotrophic Factor into the Lateral Entorhinal Cortex from the Paraventricular Thalamus Ameliorates Social Memory Deficits in a Mouse Model of Alzheimer's Disease.
Yun-Long XU ; Lin ZHU ; Zi-Jun CHEN ; Xiao-Fei DENG ; Pei-Dong LIU ; Shan LI ; Bing-Chun LIN ; Chuan-Zhong YANG ; Wei XU ; Kui-Kui ZHOU ; Ying-Jie ZHU
Neuroscience Bulletin 2022;38(11):1425-1430

Result Analysis
Print
Save
E-mail