1.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
2.Buyang Huanwu Decoction Promotes Recovery after Spinal Cord Injury by Regulating cAMP/PKA/NF-κB p65 Pathway.
Si-Yuan LI ; Ting-Ting FAN ; Jian YIN ; Cai-Yun WAN ; Mei-Li LI ; Shuai-Shuai XIA ; Qiang LI ; Liang LI
Chinese journal of integrative medicine 2025;31(7):635-643
OBJECTIVE:
To investigate whether Buyang Huanwu Decoction (BYHWD) had a good curative effect on the neuroprotection of red nucleus neurons after spinal cord injury (SCI) and the possible molecular mechanism.
METHODS:
Ninety male Sprague-Dawley rats were divided into 5 groups (n=18 per group) according to a random number table, including the control, model, low- (12.78 g/kg, BL group), medium- (25.65 g/kg, BM group), and high-dose BYHWD groups (51.30 g/kg, BH group). A rubrospinal tract transection model in rats was established, and different doses of BYHWD were intragastrically administrated for 4 weeks. The forelimb locomotor function was recorded using the spontaneous vertical exploration test. Cyclic adenosine monophosphate (cAMP) level in red nucleus was detected through an enzyme-linked immunosorbent assay. The morphology and number of red nucleus neurons were observed using Nissl's staining and axonal retrograde tracing by Fluoro-Gold (FG). The expression of cAMP-dependent protein kinase A (PKA), nuclear factor kappa-B (NF-κB) p65, and brain-derived neurotrophic factor (BDNF) in red nucleus were detected using immunohistochemistry and quantitative real-time polymerase chain reaction.
RESULTS:
Compared with the control group, the utilization rate of bilateral forelimbs, unilateral right forelimbs, proportion of FG-labeled positive neurons, cAMP level, protein expressions of PKA and BDNF, and BDNF mRNA expression were significantly decreased in the model group (P<0.01), while NF-κB p65 was increased in the model group (P<0.01). Compared with the model group, the utilization rate of bilateral forelimbs and unilateral right forelimbs were significantly higher in the BL, BM and BH groups (P<0.01), the proportion of FG-labeled positive neurons, cAMP level, protein expressions of PKA and BDNF and BDNF mRNA expression in all BYHWD groups were increased (P<0.05 or P<0.01), while NF-κB p65 were decreased in all BYHWD groups (P<0.05 or P<0.01).
CONCLUSIONS
BYHWD possesses a sound neuroprotective effect on red nucleus neurons after SCI, and the efficacy was dose-related. The mechanism may be related to regulating the cAMP/PKA/NF-κ B p65 signaling pathway, finally promoting expression of BDNF.
Animals
;
Spinal Cord Injuries/pathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Male
;
Cyclic AMP/metabolism*
;
Transcription Factor RelA/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Red Nucleus/metabolism*
;
Recovery of Function/drug effects*
;
Neurons/metabolism*
;
Rats
3.Effect of retinoic acid on delayed encephalopathy after acute carbon monoxide poisoning: Role of the lncRNA SNHG15/LINGO-1/BDNF/TrkB axis.
Fangling HUANG ; Su'e WANG ; Zhengrong PENG ; Xu HUANG ; Sufen BAI
Journal of Central South University(Medical Sciences) 2025;50(6):955-969
OBJECTIVES:
The neurotoxicity of carbon monoxide (CO) to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Our previous study found that retinoic acid (RA) can suppress the neurotoxic effects of CO. This study further explores, in vivo and in vitro, the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.
METHODS:
A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO, and a DEACMP animal model was established in adult Kunming mice. Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin V/propidium iodide (PI) double staining. The transcriptional and protein expression of each gene was detected using real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting. Long noncoding RNA (lncRNA) SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes. In DEACMP mice, SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.
RESULTS:
RA at 10 and 20 μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes, downregulation of SNHG15 and LINGO-1, and upregulation of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) (all P<0.05). Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity (all P<0.05). Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels (all P<0.05). Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP (all P<0.05).
CONCLUSIONS
RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes, thereby reducing central nervous system injury and exerting neuroprotective effects. LncRNA SNHG15 and LINGO-1 are key molecules mediating RA-induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway. These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
Animals
;
RNA, Long Noncoding/physiology*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Carbon Monoxide Poisoning/complications*
;
Mice
;
Tretinoin/pharmacology*
;
Nerve Tissue Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Apoptosis/drug effects*
;
Hippocampus/cytology*
;
Receptor, trkB/metabolism*
;
Neurons/drug effects*
;
Male
;
Brain Diseases/etiology*
;
Oligodendroglia/drug effects*
;
Signal Transduction
;
Cell Line
4.Mechanism by which hyperglycemia regulates precursor of brain-derived neurotrophic factor expression to exacerbate neurological injury and inflammation in a mouse model of spinal cord ischemia-reperfusion injury.
Wei LUO ; Xuemei MIAO ; Tao LIU ; Yiyu XIONG ; Ruping DAI ; Hui LI
Journal of Central South University(Medical Sciences) 2024;49(12):1875-1884
OBJECTIVES:
Spinal cord ischemia-reperfusion injury (SCIRI) remains a major challenge in the field of organ protection due to the lack of effective prevention and therapeutic strategies. Hyperglycemia, a common perioperative condition, contributes to neurological injury via multiple mechanisms. However, its role and underlying mechanism in SCIRI are still unclear. This study aims to investigate the involvement of the precursor of brain-derived neurotrophic factor (proBDNF) in hyperglycemia-induced SCIRI in mice.
METHODS:
Eight-week-old male C57BL/6 mice were randomly assigned to a control group (Vehicle) or a diabetes mellitus (DM) group. The DM group was established using intraperitoneal injection of streptozotocin (STZ) combined with 10% sucrose water. The Vehicle group received an equal volume of 50 mmol/L sodium citrate buffer (pH 4.5). Fasting blood-glucose levels ≥11.1 mmol/L were considered successful DM modeling. Both Vehicle and DM groups underwent SCIRI modeling via descending aortic clamping, while the Sham group underwent a sham procedure without aortic occlusion. Lower limb motor function was assessed using the Basso Mouse Scale (BMS) and its subscale (sub-BMS). Locomotor activity was evaluated using an open field test. Immunohistochemistry was performed to detect changes in neuronal nuclear protein (NeuN) and proBDNF expression in spinal cord tissues. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to measure mRNA expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). To explore the effect of proBDNF inhibition, diabetic mice were divided into groups: A DM+SCIRI+monoclonal anti-proBDNF antibody (McAb-proB) group received an intraperitoneal injection of 100 μg of McAb-proB 30 minutes before SCIRI modeling, and a DM+SCIRI+Vehicle group received an equal amount of isotype immunoglobulin G. BMS and sub-BMS scores were recorded, and the gene expression of inflammatory cytokines mentioned above were evaluated.
RESULTS:
Compared with the Vehicle+SCIRI group, the DM+SCIRI group showed significantly reduced BMS and sub-BMS scores, decreased NeuN expression, shorter total movement distance, slower locomotion, increased proBDNF expression, and elevated IL-1β, IL-6, and TNF-α mRNA levels (all P<0.05 or P<0.01). Compared with the DM+SCIRI+Vehicle group, the DM+SCIRI+McAb-proB group exhibited significantly improved BMS and sub-BMS scores and decreased mRNA expression of IL-1β, IL-6, and TNF-α (all P<0.05 or P<0.01).
CONCLUSIONS
Hyperglycemia exacerbates neural injury and inflammatory response in SCIRI through upregulation of proBDNF expression, delaying motor functional recovery. Antagonizing proBDNF expression can alleviate neurological damage and promote functional recovery in diabetic mice after SCIRI.
Animals
;
Male
;
Hyperglycemia/metabolism*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Mice, Inbred C57BL
;
Reperfusion Injury/metabolism*
;
Mice
;
Diabetes Mellitus, Experimental/metabolism*
;
Inflammation/metabolism*
;
Disease Models, Animal
;
Spinal Cord/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Protein Precursors/genetics*
;
Spinal Cord Ischemia/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-1beta/metabolism*
5.Neuroprotective effect and mechanism of Zuogui Jiangtang Jieyu Formula on diabetes mellitus complicated with depression model rats based on CX3CL1-CX3CR1 axis.
Ping LI ; Yang LIU ; Man-Shu ZOU ; Ting-Ting WANG ; Hai-Peng GUO ; Ting-Ting REN ; Ying HE ; Hua WANG ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2023;48(21):5822-5829
Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.
Rats
;
Animals
;
Depression/drug therapy*
;
Brain-Derived Neurotrophic Factor
;
Neuroprotective Agents
;
Tumor Necrosis Factor-alpha/metabolism*
;
Neuroinflammatory Diseases
;
Diabetes Mellitus
;
Receptors, Glutamate
;
CX3C Chemokine Receptor 1/genetics*
6.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*
7.Pretreatment of Populus tomentiglandulosa protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury in gerbils via increasing SODs expressions and maintaining BDNF and IGF-I expressions.
Tae-Kyeong LEE ; Joon Ha PARK ; Ji Hyeon AHN ; Hyunjung KIM ; Minah SONG ; Jae-Chul LEE ; Jong Dai KIM ; Yong Hwan JEON ; Jung Hoon CHOI ; Choong Hyun LEE ; In Koo HWANG ; Bing-Chun YAN ; Moo-Ho WON ; Il Jun KANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):424-434
To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.
Animals
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
CA1 Region, Hippocampal
;
drug effects
;
metabolism
;
Gerbillinae
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Male
;
Neuroprotective Agents
;
administration & dosage
;
Plant Extracts
;
administration & dosage
;
Populus
;
chemistry
;
Pyramidal Cells
;
drug effects
;
metabolism
;
Reperfusion Injury
;
drug therapy
;
genetics
;
metabolism
;
Superoxide Dismutase
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
8.Terminalia arjuna bark extract attenuates picrotoxin-induced behavioral changes by activation of serotonergic, dopaminergic, GABAergic and antioxidant systems.
Y CHANDRA SEKHAR ; G PHANI KUMAR ; K R ANILAKUMAR
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):584-596
Stress and emotion are associated with several illnesses from headaches to heart diseases and immune deficiencies to central nervous system. Terminalia arjuna has been referred as traditional Indian medicine for several ailments. The present study aimed to elucidate the effect of T. arjuna bark extract (TA) against picrotoxin-induced anxiety. Forty two male Balb/c mice were randomly divided into six experimental groups (n = 7): control, diazepam (1.5 mg·kg), picrotoxin (1 mg·kg) and three TA treatemt groups (25, 50, and 100 mg/kg). Behavioral paradigms and PCR studies were performed to determine the effect of TA against picrotoxin-induced anxiety. The results showed that TA supplementation increased locomotion towards open arm (EPM) and illuminated area (light-dark box test), and increased rearing frequency (open field test) in a dose dependent manner, compared to picrotoxin (P < 0.05). Furthermore, TA increased number of licks and shocks in Vogel's conflict. PCR studies showed an up-regulation of several genes, such as BDNF, IP, DL, CREB, GABA, SOD, GPx, and GR in TA administered groups. In conclusion, alcoholic extract of TA bark showed protective activity against picrotoxin in mice by modulation of genes related to synaptic plasticity, neurotransmitters, and antioxidant enzymes.
Animals
;
Antioxidants
;
metabolism
;
Anxiety Disorders
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
Dopamine Agents
;
administration & dosage
;
GABA Agents
;
administration & dosage
;
Glutathione Peroxidase
;
genetics
;
metabolism
;
Humans
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Neuronal Plasticity
;
drug effects
;
Neurotransmitter Agents
;
metabolism
;
Phytotherapy
;
Picrotoxin
;
adverse effects
;
Plant Bark
;
chemistry
;
Plant Extracts
;
administration & dosage
;
Serotonin Agents
;
administration & dosage
;
Superoxide Dismutase-1
;
genetics
;
metabolism
;
Terminalia
;
chemistry
9.Neuroprotective effects of electroacupuncture on hypoxic-ischemic encephalopathy in newborn rats are associated with increased expression of GDNF-RET and protein kinase B.
Tao XU ; Neng-Gui XU ; Zhong-Hua YANG ; Yan-Zhen WAN ; Qing-Long WU ; Kang-Bai HUANG
Chinese journal of integrative medicine 2016;22(6):457-466
OBJECTIVETo explore the neuroprotective effects of electroacupuncture (EA) on hypoxic-ischemic encephalopathy (HIE) and to further investigate the role of glial cell line-derived neurotrophic factor (GDNF) family receptor member RET (rearranged during transfection) and its key downstream phosphatidylinositol 3 kinase (PI-3K)/protein kinase B (Akt) pathway in the process.
METHODSA total of 220 seven-day-old SD rats (of either sex, from 22 broods) were randomly divided into two groups, one (30 rats) for sham-surgery group and the other (190 rats) for HIE model group. The HIE model was established using the left common carotid artery ligation method in combination with hypoxic treatment. The successfully established rats were randomly divided into five groups, including control model group, EA group, sham-EA group, antagonist group and antagonist plus electroacupuncture group, with 35 rats in each group. Baihui (GV 20), Dazhui (GV 14), Quchi (LI 11) and Yongquan (KI 1) acupoints were chosen for acupuncture. EA was performed at Baihui and Quchi for 10 min once a day for continuous 1, 3, 7 and 21 days, respectively. The rats were then killed after the operation and injured cerebral cortex was taken for the measurement of neurologic damage by hematoxylin-eosin (HE) staining and the degenerative changes of cortical ultrastructure by transmission electron microscopy. RET mRNA level and Akt protein level were detected by real-time reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis, respectively.
RESULTSEA could ameliorate neurologic damage of the first somatic sensory area (S1Tr) and alleviate the degenerative changes of ultrastructure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex.
CONCLUSIONEA has neuroprotective effects on HIE and could be a potential therapeutic strategy for HIE in the neonate. Activation of RET/Akt signaling pathway might be involved in this process.
Animals ; Blotting, Western ; Cerebral Cortex ; pathology ; ultrastructure ; Electroacupuncture ; Female ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; metabolism ; Hypoxia-Ischemia, Brain ; genetics ; pathology ; therapy ; Male ; Nerve Degeneration ; pathology ; Neurons ; pathology ; ultrastructure ; Neuroprotective Agents ; therapeutic use ; Proto-Oncogene Proteins c-akt ; genetics ; metabolism ; Proto-Oncogene Proteins c-ret ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction
10.Expressions of neurotransmitters in patients of insomnia differentiated as liver stagnation transforming into fire treated with acupuncture.
Xiangdong JI ; Qunsong WANG ; Wenxian ZHU
Chinese Acupuncture & Moxibustion 2015;35(6):549-552
OBJECTIVETo compare the difference in the efficacy between acupuncture and oral administration of trazodone and the expressions of neurotransmitters in patients of insomnia differentiated as liver stagnation transforming into fire.
METHODSSeventy patients of insomnia differentiated as liver stagnation transforming into fire were randomized into an observation group and a control group, 35 cases in each one. In the observation group, acupuncture therapy was adopted at Shenmen (HT 7), Baihui (GV 20), Yintang (GV 29), Hegu (LI 4), Taichong (LR 3), etc. The needles were retained for 20 min each time. The treatment was given once a day, the treatment of 2 weeks made one session. In the control group, trazodone, 100 mg, oral administration, once a day, the treatment of 2 weeks made one session. Two sessions were required in the two groups. The scores in Pittsburgh sleep quality index (PSQI) and Asberg rating scale for side effects (SERS), the levels of neurotransmitters such as 5-hydroxy tryptamine (5-HT) and norepinephrine (NE) and the expressions of protein kinase C (PKC) and brain-derived neurotrophic factor (BDNF) in peripheral blood were observed before and after treatment in the two groups.
RESULTSPSQI score and SERS score after treatment were all decreased compared with those in both groups before treatment (both P<0. 05). After treatment, PSQI score and SERS score in the observation group were lower apparently than those in the control group (both P<0. 05). After treatment NE content and PKC level were decreased; 5-HT content and BDNF mRNA were increased compared with those in both groups before treatment (all P<0. 05). NE content and PKC level in the observation group were lower apparently than those in the control group (both P<0. 05). The serum 5-HT content and BDNF mRNA expression in the observation group were higher than those in the control group separately (both P<0. 05).
CONCLUSIONAcupuncture therapy improves the sleeping quality of patients of insomnia differentiated as liver stagnation transforming into fire, and reduces serum NE level and increases 5-HT content and BDNF expression, which achieves the better efficacy as compared with the oral administration of trazodone. It is one of the effective approaches to the treatment of insomnia differentiated as liver stagnation transforming into fire.
Acupuncture Points ; Acupuncture Therapy ; Adult ; Aged ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Female ; Humans ; Liver ; physiopathology ; Male ; Neurotransmitter Agents ; genetics ; metabolism ; Norepinephrine ; genetics ; metabolism ; Serotonin ; metabolism ; Sleep Initiation and Maintenance Disorders ; genetics ; metabolism ; physiopathology ; therapy ; Treatment Outcome

Result Analysis
Print
Save
E-mail