1.Effect of Xingnao Kaiqiao acupuncture technique on m6A methylation modification in cortical area of rats with cerebral ischemia-reperfusion injury.
Xinyu LIU ; Xinchang ZHANG ; Zheng HUANG ; Qianqian LIU ; Yi ZHAO ; Tianliang LU ; Zhihui ZHANG ; Guangxia NI
Chinese Acupuncture & Moxibustion 2025;45(5):670-677
OBJECTIVE:
To observe the effects of Xingnao Kaiqiao acupuncture technique (for regaining consciousness and opening orifice) on methylation of N6-methyladenosine (m6A), and key methyltransferases and demethylases, so as to clarify the mechanism of acupuncture on cerebral ischemia-reperfusion injury (CIRI).
METHODS:
Of 68 male Sprague-Dawley rats of SPF grade, 15 rats were randomly selected as a sham-operation group, and the remaining rats were subjected to the model of middle cerebral artery occlusion using the suture ligation. CIRI was induced by ischemia for 2 h followed by reperfusion. Rats that failed to modeling or died were excluded. The rest 45 rats were randomly divided into three groups, i.e. model group, acupuncture group, and non-point acupuncture group, with 15 rats in each group. The rats in the acupuncture group were treated with acupuncture at bilateral "Neiguan" (PC6) and "Shuigou" (GV26). In the non-point acupuncture group, acupuncture was delivered at three non-points, located 3 mm below the bilateral midaxillary line and 3 mm lateral to the tip of the coccyx. One intervention was operated in these two acupuncture groups and the needles were retained for 30 min. Before modeling start and 2 h after ischemia, a laser speckle flowmeter was used to monitor the cerebral blood perfusion. In 2 h of ischemia and 24 h of reperfusion, the neurological behavioral score was evaluated. The volume of rat cerebral infarction was determined by triphenyltetrazolium chloride (TTC) staining, and the level of m6A methylation in ischemic cortical area was detected by Dot blot, and the protein and mRNA expression of the demethylase i.e. fat mass and obesity-associated protein (FTO), AlkB homolog 5 (ALKBH5) and key methyltransferases, i.e. methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), and Wilms' tumor 1-associated protein (WTAP) in ischemic cortical area were detected by Western blot and real-time PCR.
RESULTS:
Cerebral blood perfusion decreased by>70% after 2 h ischemia. Compared with the sham-operation group, the neurobehavioral score and the percentage of cerebral infarction volume increased in the model group (P<0.01); the level of m6A methylation in the ischemic cortical area increased (P<0.01), the protein and mRNA expression of FTO decreased (P<0.01), and that of ALKBH5, METTL3, and METTL14 increased (P<0.01, P<0.05) in the model group. When compared with the model group and the non-point acupuncture group, the acupuncture group showed a decrease in the neurobehavioral score and the percentage of cerebral infarction volume (P<0.01), the level of m6A methylation in the ischemic cortical area was reduced (P<0.01, P<0.05), and the protein and mRNA expression of FTO was elevated (P<0.01).
CONCLUSION
Xingnao Kaiqiao acupuncture technique presents its protective effect on the brain in the rats with CIRI, which is related to up-regulating the expression of FTO and modulating m6A methylation.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Acupuncture Therapy
;
Reperfusion Injury/genetics*
;
Rats
;
Brain Ischemia/genetics*
;
Humans
;
Adenosine/metabolism*
;
Methylation
;
Acupuncture Points
;
Cerebral Cortex/metabolism*
2.Mechanism of acupuncture on cerebral ischemia-reperfusion injury via p53/SLC7A11/GPX4 signaling pathway in rat models.
Qi WANG ; Ziwen HOU ; Yaoyao LIU ; Dan WEI ; Qingjie KONG ; Xia CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1099-1110
OBJECTIVE:
To explore the neuroprotective effect and underlying mechanism of Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) in the rat models of cerebral ischemia-reperfusion injury (CIRI) based on the p53 protein (p53)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway.
METHODS:
Of 102 male Wistar rats, 20 rats were randomly collected as a sham-operation group. Using a modified external carotid artery filament insertion method, CIRI models were prepared by occluding the middle cerebral artery in the rest rats. After modeling and excluding 1 non-successfully modeled rat and 1 dead one, the other modeled rats were randomized into a model group, an agonist group, an acupuncture group, and an acupuncture + agonist group, 20 rats in each one. Xingnao Kaiqiao acupuncture therapy was delivered in the rats of the acupuncture group and the acupuncture + agonist group. The acupoints included "Shuigou" (GV26), bilateral "Neiguan" (PC6), and "Sanyinjiao" (SP6) on the affected side. Electroacupuncture was attached to "Neiguan" (PC6) and "Sanyinjiao" (SP6) on the affected side, with dense-disperse wave, a frequency of 2 Hz/15 Hz and intensity of 1 mA. The intervention was delivered twice daily, 20 min each time and for 7 consecutive days. In the agonist group and acupuncture+agonist group, p53 agonist, COTI-2 was intraperitoneally injected (15 mg/kg), once daily for 7 consecutive days. Neurological deficit was evaluated using Zausinger's six-point scale. Cerebral infarction volume was quantified by triphenyl tetrazolium chloride (TTC) staining. Histopathological changes were observed using hematoxylin-eosin (HE) staining. Iron deposition was assessed by Prussian blue staining. Mitochondrial ultrastructure in the ischemic cortex was examined under transmission electron microscopy (TEM). Serum iron (Fe2+) was measured with chromometry. Malondialdehyde (MDA) and glutathione (GSH) levels in the ischemic hippocampus were determined using thiobarbituric acid and microplate assays, respectively. The mean fluorescence intensity of reactive oxygen species (ROS) in the ischemic cortex was analyzed by flow cytometry. The mRNA and protein expression of GPX4, SLC7A11, and p53 in the ischemic hippocampus were evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting, respectively.
RESULTS:
Compared with the sham-operated group, the model group exhibited the decrease in neurological deficit score (P<0.01), and the increase in cerebral infarction volume percentage (P<0.01). The changes of brain tissue were presented in extensive cellular necrosis, pyknotic and deeply-stained nuclei, and vacuolar degeneration. The iron deposition was elevated in cortex and hippocampus (P<0.01), mitochondrial membrane density increased, the cristae was broken or reduced, and the outer membrane ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were elevated (P<0.01) and the level of GSH was reduced (P<0.01). The mRNA and protein expression of GPX4 and SLC7A11 was reduced (P<0.01), while that of p53 rose (P<0.01). When compared with the model group, in the agonist group, the neurological deficit score was reduced (P<0.05), the percentage of infarction volume was higher (P<0.01), the histopathological damage was further exacerbated, and the percentage of iron deposition increased in the cortex and hippocampus (P<0.01). The mitochondrial quantity decreased, the membrane density increased, the mitochondrial cristae were broken or reduced, and the outer membrane was ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were higher (P<0.01, P<0.05) and the level of GSH was reduced (P<0.05). The mRNA and protein expression of GPX4 and SLC7A11 decreased (P<0.01, P<0.05), while that of p53 was elevated (P<0.01). Besides, in comparison with the model group, the neurological deficit score was higher in the acupuncture group and the acupuncture + agonist group (P<0.01, P<0.05), the percentage of cerebral infarction volume was lower in the acupuncture group (P<0.01), the pathological damage of brain tissue was alleviated in the acupuncture group and the acupuncture + agonist group, and the percentage of iron depositiondecreased in the cortex and hippocampus (P<0.01). The mitochondrial structure was relatively clear, the mitochondrial cristae were fractured or reduced mildly in the acupuncture group and the acupuncture + agonist group. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were lower (P<0.01) and the level of GSH was higher (P<0.01) in the acupuncture group. The mean fluorescence intensity of ROS were dropped (P<0.01) in the acupuncture + agonist group. The mRNA expression of GPX4 and SLC7A11 was elevated (P<0.01) and that of p53 was reduced (P<0.01, P<0.05) in either the acupuncture group or the acupuncture + agonist group; the protein expression of GPX4 and SLC7A11 rose (P<0.05, P<0.01) and that of p53 was dropped (P<0.01) in the acupuncture group; and the protein expression of p53 was also lower in the acupuncture + agonist group (P<0.05). When compared with the agonist group, in the acupuncture + agonist group, neurological deficit score increased (P<0.01), the percentage of cerebral infarction volume decreased (P<0.01), the pathological brain tissue damage was reduced, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was relatively clear and the cristae broken or reduced slightly; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were dropped (P<0.01), while the level of GSH increased (P<0.05); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01). In comparison with the acupuncture + agonist group, in the acupuncture group, the neurological deficit score increased (P<0.05), the percentage of cerebral infarction volume decreased (P<0.05), the pathological brain tissue damage was alleviated, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was normal in tendency; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were reduced (P<0.05), while the level of GSH rose (P<0.01); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao acupuncture can alleviate neurological damage in CIRI rats, which is obtained probably by inhibiting ferroptosis through p53/SLC7A11/GPX4 pathway.
Animals
;
Reperfusion Injury/metabolism*
;
Male
;
Acupuncture Therapy
;
Rats
;
Tumor Suppressor Protein p53/genetics*
;
Brain Ischemia/metabolism*
;
Rats, Wistar
;
Signal Transduction
;
Humans
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Disease Models, Animal
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
3.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
4.Prediction of immunotherapy targets for chronic cerebral hypoperfusion by bioinformatics method.
Mei ZHAO ; Yanpeng XUE ; Qingqing TIAN ; He YANG ; Qing JIANG ; Mengfan YU ; Xin CHEN
Journal of Biomedical Engineering 2025;42(2):382-388
Chronic cerebral hypoperfusion (CCH) plays an important role in the occurrence and development of vascular dementia (VD). Recent studies have indicated that multiple stages of immune-inflammatory response are involved in the process of cerebral ischemia, drawing increasing attention to immune therapies for cerebral ischemia. This study aims to identify potential immune therapeutic targets for CCH using bioinformatics methods from an immunological perspective. We identified a total of 823 differentially expressed genes associated with CCH, and further screened for 9 core immune-related genes, namely RASGRP1, FGF12, SEMA7A, PAK6, EDN3, BPHL, FCGRT, HSPA1B and MLNR. Gene enrichment analysis showed that core genes were mainly involved in biological functions such as cell growth, neural projection extension, and mesenchymal stem cell migration. Biological signaling pathway analysis indicated that core genes were mainly involved in the regulation of T cell receptor, Ras and MAPK signaling pathways. Through LASSO regression, we identified RASGRP1 and BPHL as key immune-related core genes. Additionally, by integrating differential miRNAs and the miRwalk database, we identified miR-216b-5p as a key immune-related miRNA that regulates RASGRP1. In summary, the predicted miR-216b-5p/ RASGRP1 signaling pathway plays a significant role in immune regulation during CCH, which may provide new targets for immune therapy in CCH.
Humans
;
Computational Biology/methods*
;
Brain Ischemia/therapy*
;
Immunotherapy
;
MicroRNAs/genetics*
;
Signal Transduction
;
Dementia, Vascular/genetics*
;
Chronic Disease
5.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
6.Exosomes derived from mesenchymal stem cells alleviate white matter damage in neonatal rats by targeting the NLRP3 inflammasome.
Chao WANG ; Yan-Ping ZHU ; BAYIERCAICIKE ; Yu-Qing FENG ; Yan-Mei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1119-1127
OBJECTIVES:
To investigate whether mesenchymal stem cell-derived exosomes (MSC-Exo) alleviate white matter damage (WMD) in neonatal rats by targeting the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3).
METHODS:
Three-day-old Sprague-Dawley rats were randomly assigned to four groups: Sham, hypoxia-ischemia (HI), MSC-Exo, and MCC950 (NLRP3 inhibitor) (n=24 per group). The WMD model was established by unilateral common carotid artery ligation combined with hypoxia. Exosomes (1×108 particles/μL) were transplanted into the lateral ventricle using stereotaxic guidance. Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in brain tissue, and transmission electron microscopy was used to assess myelinated axons. Western blotting was performed to detect the expression of myelin basic protein (MBP), NLRP3, caspase-1, and interleukin-1β (IL-1β). Immunohistochemistry was used to measure NLRP3, caspase-1, and IL-1β expression. Twenty-eight days post-modeling, behavioral changes were evaluated using the Morris water maze.
RESULTS:
In the HI group, marked inflammatory cell infiltration, extensive vacuolation, and decreased numbers of myelinated axons were observed compared to the Sham group. The MSC-Exo group showed reduced inflammatory infiltration, fewer vacuoles, and increased myelinated axons compared to the HI group, while the MCC950 group showed nearly normal cell morphology. Compared to the Sham group, the HI group exhibited decreased MBP expression, fewer platform crossings, shorter time in the target quadrant, increased expression of NLRP3, caspase-1, and IL-1β, and longer escape latency (all P<0.05). Compared to the HI group, the MSC-Exo and MCC950 groups showed increased MBP expression, more platform crossings, longer target quadrant stay, and reduced NLRP3, caspase-1, and IL-1β expression, as well as shorter escape latency (all P<0.05).
CONCLUSIONS
MSC-Exo may attenuate white matter damage in neonatal rats by targeting the NLRP3 inflammasome and promoting oligodendrocyte maturation.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors*
;
Rats, Sprague-Dawley
;
White Matter/pathology*
;
Inflammasomes/physiology*
;
Rats
;
Animals, Newborn
;
Mesenchymal Stem Cells
;
Interleukin-1beta/analysis*
;
Male
;
Caspase 1/analysis*
;
Hypoxia-Ischemia, Brain/therapy*
;
Myelin Basic Protein/analysis*
7.Electroacupuncture pretreatment alleviates cerebral ischemia-reperfusion injury in rats by inhibiting ferroptosis through the gut-brain axis and the Nrf2/HO-1 signaling pathway.
Anbang ZHANG ; Xiuqi SUN ; Bo PANG ; Yuanhua WU ; Jingyu SHI ; Ning ZHANG ; Tao YE
Journal of Southern Medical University 2025;45(5):911-920
OBJECTIVES:
To investigate the neuroprotective effects of electroacupuncture (EA) preconditioning against cerebral ischemia-reperfusion injury (CIRI) mediated by gut microbiota modulation, Nrf2/HO-1 pathway activation, and ferroptosis suppression.
METHODS:
Adult male SD rats were divided into sham operation group, CIRI model group, and EA preconditioning group. In the latter two groups, rat models of CIRI were established by middle cerebral artery occlusion (MCAO), and in EA preconditioning group, EA was applied at Baihui (DU20) and Zusanli (ST36) for 3 days before modeling. Neurological deficits, cerebral infarction, and hippocampal pathology of the rats were evaluated using behavioral tests, TTC staining, and Nissl and HE staining, and the oxidative stress markers (MDA, ROS, and SOD), apoptosis/ferroptosis-related proteins (Bax, Bcl-2, GPX4, and SLC7A11), and changes in gut microbiota were analyzed.
RESULTS:
EA preconditioning significantly reduced neurological deficits, decreased infarct volume, promoted hippocampal neuronal survival, and improved structural integrity of the hippocampal neurons in MCAO rats. EA preconditioning also significantly lowered MDA and ROS and increased SOD levels, upregulated Bcl-2, GPX4, and SLC7A11 expressions, and downregulated Bax expression in the hippocampal tissue of the rats, causing also activation of Nrf2/HO-1 signaling and improvement of gut microbiota composition.
CONCLUSIONS
EA preconditioning alleviates CIRI in rats by suppressing ferroptosis and apoptosis, enhancing antioxidant defenses via activating Nrf2/HO-1 signaling, and regulating the gut-brain axis.
Animals
;
Electroacupuncture
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Reperfusion Injury/therapy*
;
Ferroptosis
;
Male
;
Rats
;
Brain Ischemia
;
Gastrointestinal Microbiome
;
Heme Oxygenase (Decyclizing)/metabolism*
;
Brain/metabolism*
;
Oxidative Stress
;
Heme Oxygenase-1/metabolism*
;
Apoptosis
8.Eye acupuncture improves neural function in rats with cerebral ischemia-reperfusion injury by promoting angiogenesis via upregulating METTL3-mediated m6A methylation.
Yanpeng PU ; Zhen WANG ; Haoran CHU
Journal of Southern Medical University 2025;45(5):921-928
OBJECTIVES:
To evaluate the effect of eye acupuncture on neural function and angiogenesis of ischemic cerebral tissue in rats, and explore the roles of METTL3-mediated m6A methylation and the HIF-1α/VEGF-A signal axis in mediating this effect.
METHODS:
Fifty SD rats were randomized into normal control group, sham-operated group, model group, eye acupuncture group and DMOG (a HIF-1α agonist) group. Rat models of cerebral ischemia/reperfusion injury (CIRI) were established using a modified thread thrombus method, and the changes in neurological deficits of the rats after interventions were evaluated. TTC and Nissl staining were used to examine the changes in infarction size and neuronal injury, and cerebral angiogenesis was detected by double-immunofluorescence staining. m6A methylation modification level in the brain tissue was detected by ELISA, and RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of METTL3 and HIF-1α/VEGF-A.
RESULTS:
Compared with the control and sham-operated rats, the CIRI rats had significantly higher neurological deficit scores with larger cerebral infarction area, a greater number of CD31- and EDU-positive new vessels, higher expression levels of HIF-1α and VEGF-A, reduced number of Nissl bodies and m6A methylation level, and lowered METTL3 protein and mRNA expressions. All these changes were significantly improved by interventions with eye acupuncture after modeling or intraperitoneal injections of DMOG for 7 consecutive days prior to modeling, and the effects of the two interventions were similar.
CONCLUSIONS
Eye acupuncture can improve neurological deficits in CIRI rat models possibly by promoting cortical angiogenesis via upregulating METTL3-mediated m6A methylation and regulating the HIF-1α/VEGF-A signal axis.
Animals
;
Rats, Sprague-Dawley
;
Methyltransferases/metabolism*
;
Reperfusion Injury/physiopathology*
;
Methylation
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Rats
;
Vascular Endothelial Growth Factor A/metabolism*
;
Brain Ischemia/metabolism*
;
Acupuncture Therapy
;
Male
;
Up-Regulation
;
Neovascularization, Physiologic
;
Angiogenesis
;
Adenosine/analogs & derivatives*
9.Gastrodin inhibits ferroptosis to alleviate hypoxic-ischemic brain damage in neonatal mice by activating GPX4/SLC7A11/FTH1 signaling.
Tao GUO ; Bolin CHEN ; Jinsha SHI ; Xianfeng KUANG ; Tengyue YU ; Song WEI ; Xiong LIU ; Rong XIAO ; Juanjuan LI
Journal of Southern Medical University 2025;45(10):2071-2081
OBJECTIVES:
To evaluate the therapeutic effect of gastrodin against hypoxic-ischemic brain damage (HIBD) in neonatal mice and explore the role of GPX4/SLC7A11/FTH1 signaling in mediating its effect.
METHODS:
Twenty-four 9- to 11-day-old C57BL/6J mice were randomized equally into 4 groups for sham operation, HIBD modeling by right common carotid artery ligation and subsequent exposure to hypoxia for 1 h, or gastrodin treatment at 100 or 200 mg/kg before and at 1 and 2 days after modeling. The mice then underwent neurological assessment (Zea-Longa scores), and the cerebral cortical penumbra tissue were collected for HE and Nissl staining, detection of ferroptosis biomarkers and protein expressions of GPX4, SLC7A11, and FTH1 with Western blotting and immunofluorescence co-localization, and observation of mitochondrial ultrastructure with electron microscopy. In cultured HT22 neuronal cells with oxygen-glucose deprivation (OGD) for 2 h, the effects of pretreatments with 0.5 mmol/L gastrodin, 10 μmol/L RSL3 (a GPX4 inhibitor), alone or in combination, were analyzed on expressions of ferroptosis-related proteins, cellular Fe²⁺, ROS, lipid peroxidation, MDA, and GSH levels, mitochondrial membrane potential (JC-1), and cell viability.
RESULTS:
Gastrodin treatment at the two doses both significantly ameliorated HIBD and neurological deficits of the mice, reduced mitochondrial damage and Fe²⁺, MDA and ROS levels, increased GSH level, and upregulated GPX4, SLC7A11, and FTH1 protein expressions. In HT22 cells, gastrodin pretreatment obviously attenuated OGD-induced ferroptosis and improved cell viability and mitochondrial function. Co-treatment with RSL3 potently abrogated the inhibitory effects of gastrodin on Fe²⁺, ROS, BODIPY-C11, and MDA levels and attenuated its protective effects on GSH level, cell viability, and mitochondrial membrane potential.
CONCLUSIONS
Gastrodin provides neuroprotective effects in neonatal mice with HIBD by suppressing neuronal ferroptosis via upregulating the GPX4/SLC7A11/FTH1 signaling pathway.
Animals
;
Ferroptosis/drug effects*
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Glucosides/pharmacology*
;
Animals, Newborn
;
Benzyl Alcohols/pharmacology*
;
Amino Acid Transport System y+/metabolism*
10.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins

Result Analysis
Print
Save
E-mail