1.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
2.Artesunate alleviates hypoxic-ischemic brain damage in neonatal rats by inhibiting NLRP3 inflammasome activation and inflammatory cytokine secretion.
Yinli CAO ; Yazhou SUN ; Qingyang CUI ; Xiaojing HE ; Zhenzhen LI
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):410-415
Objective To investigate the protective effect of artesunate on hypoxic-ischemic brain damage (HIBD) and its mechanism in neonatal rats. Methods 7-day-old neonatal SD rats were randomly divided into sham operation group, model group, artesunate 5 mg/kg group, artesunate 10 mg/kg group, artesunate 20 mg/kg group and dexamethasone 6 mg/kg group, with 18 rats in each group. HIBD models were established in groups except for the sham operation group. The sham operation group only needed to separate the left common carotid artery without ligation and nitrogen-oxygen mixed gas ventilation. Each group was injected with drug intraperitoneally right after surgery and the rats in the sham operation group and the model group were injected with an equal volume of normal saline (once a day for a total of 5 times). One hour after the last injection, the rats in each group were scored for neurological defects. After the rats were sacrificed, the brain water content was measured and the pathological changes of the brain tissues of rats were observed. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect the neuronal cell apoptosis, and ELISA was applied to detect the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood of each group of rats. Western blot analysis was adopted to detect the protein expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1 in the rats brain tissues of each group. Results Compared with the model group, the neurological deficit score was decreased; the pathological damage of brain tissues was relieved; the brain water content was significantly reduced; the apoptosis number of hippocampal neurons was decreased significantly; the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood were significantly reduced; the protein expression levels of NLRP3, ASC and caspase-1 were significantly lowered in the middle-dose and high-dose artesunate groups and the dexamethasone group. Conclusion Artesunate can improve the neurological function, relieve the brain damage, and alleviate the brain edema in neonatal rats with HIBD. It can protect the HIBD, which may be related to the inhibition of NLRP3 inflammasome activation and reduction of inflammatory cytokine secretion.
Animals
;
Rats
;
Animals, Newborn
;
Artesunate/pharmacology*
;
Brain/metabolism*
;
Caspases/metabolism*
;
Dexamethasone
;
Hypoxia-Ischemia, Brain/pathology*
;
Inflammasomes
;
Interleukin-6/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Water/metabolism*
3.Research advances in prevention and treatment of cerebral ischemia-reperfusion injury by targeting mitochondrial quality control.
Xuan WEI ; Ji-Yong LIU ; Wen-Li ZHANG ; Zhi-Gang MEI
China Journal of Chinese Materia Medica 2022;47(16):4305-4313
Cerebral ischemia-reperfusion injury(CIRI) is an important factor hindering the recovery of ischemic stroke patients after blood flow recanalization. Mitochondria, serving as the "energy chamber" of cells, have multiple important physiological functions, such as supplying energy, metabolizing reactive oxygen species, storing calcium, and mediating programmed cell death. During CIRI, oxidative stress, calcium overload, inflammatory response, and other factors can easily lead to neuronal mitochondrial dyshomeostasis, which is the key pathological link leading to secondary injury. As reported, the mitochondrial quality control(MQC) system, mainly including mitochondrial biosynthesis, kinetics, autophagy, and derived vesicles, is an important endogenous mechanism to maintain mitochondrial homeostasis and plays an important protective role in the damage of mitochondrial structure and function caused by CIRI. This paper reviewed the mechanism of MQC and the research progress on MQC-targeting therapy of CIRI in recent 10 years to provide theoretical references for exploring new strategies for the prevention and treatment of ischemic stroke with traditional Chinese medicine.
Brain Ischemia/prevention & control*
;
Calcium/metabolism*
;
Humans
;
Ischemic Stroke
;
Mitochondria/pathology*
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/prevention & control*
4.Neuroprotective Autophagic Flux Induced by Hyperbaric Oxygen Preconditioning is Mediated by Cystatin C.
Zongping FANG ; Yun FENG ; Yuheng LI ; Jiao DENG ; Huang NIE ; Qianzhi YANG ; Shiquan WANG ; Hailong DONG ; Lize XIONG
Neuroscience Bulletin 2019;35(2):336-346
We have previously reported that Cystatin C (CysC) is a pivotal mediator in the neuroprotection induced by hyperbaric oxygen (HBO) preconditioning; however, the underlying mechanism and how CysC changes after stroke are not clear. In the present study, we demonstrated that CysC expression was elevated as early as 3 h after reperfusion, and this was further enhanced by HBO preconditioning. Concurrently, LC3-II and Beclin-1, two positive-markers for autophagy induction, exhibited increases similar to CysC, while knockdown of CysC blocked these elevations. As a marker of autophagy inhibition, p62 was downregulated by HBO preconditioning and this was blocked by CysC knockdown. Besides, the beneficial effects of preserving lysosomal membrane integrity and enhancing autolysosome formation induced by HBO preconditioning were abolished in CysC rats. Furthermore, we demonstrated that exogenous CysC reduced the neurological deficits and infarct volume after brain ischemic injury, while 3-methyladenine partially reversed this neuroprotection. In the present study, we showed that CysC is biochemically and morphologically essential for promoting autophagic flux, and highlighted the translational potential of HBO preconditioning and CysC for stroke treatment.
Animals
;
Autophagy
;
physiology
;
Beclin-1
;
metabolism
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
metabolism
;
pathology
;
therapy
;
Cystatin C
;
genetics
;
metabolism
;
Disease Models, Animal
;
Gene Expression
;
Gene Knockdown Techniques
;
Hyperbaric Oxygenation
;
Lysosomes
;
metabolism
;
pathology
;
Male
;
Microtubule-Associated Proteins
;
metabolism
;
Neurons
;
metabolism
;
pathology
;
Neuroprotection
;
physiology
;
Oxygen
;
therapeutic use
;
Random Allocation
;
Rats, Sprague-Dawley
;
Rats, Transgenic
;
Reperfusion Injury
;
metabolism
;
pathology
;
therapy
5.Effect of Acupuncture on the Notch Signaling Pathway in Rats with Brain Injury.
Yi-Min ZHANG ; Sheng-Xin CHEN ; Qiu-Fu DAI ; Shu-Ting JIANG ; Ai-Lian CHEN ; Chun-Zhi TANG ; Yu-Qing ZHANG
Chinese journal of integrative medicine 2018;24(7):537-544
OBJECTIVETo observe the effect of acupuncture on the Notch signaling pathway in rats with traumatic brain injury and to explore the pathogenesis of acupuncture intervention on traumatic brain injury.
METHODSFeeney's freefall epidural impact method was used to establish a traumatic brain injury model in rats; the rats were randomly divided into a normal group, sham operation group, model group and acupuncture group. Acupuncture was performed in the Baihui (DU 20), Shuigou (DU 26), Fengfu (DU 16), Yamen (DU 15) and Hegu (LI 4) acupoints in the rat, and Yamen was punctured via Fengfu. Then, the rats in each group were randomly divided into three subgroups, namely the day 3 subgroup, day 7 subgroup and day 14 subgroup according to treatment duration. The modified neurological severity scores (mNss) method was used to perform neurobehavioral scoring for evaluating the degree of injury in the rats. The hematoxylin-eosin (HE) staining method was used to observe the pathological change in the brain tissue of rats in each group. Real-time fluorescent quantitative polymerase chain reaction (Q-PCR) technology was used to detect changes in the Notch1, Hes1 and Hes5 gene expression levels in the cortex on the injured side. Western blot was used to detect the protein expression changes.
RESULTSOne day after modeling, the mNss scores in the model group and in the acupuncture group were significantly higher than those in the normal and sham operation groups (P<0.01) ; there was no statistically significant difference between the normal group and the sham operation group. The scores decreased with increased treatment time, and the scores in the acupuncture group decreased more significantly than those in the model group (P<0.01). The pathological examination by the HE staining method demonstrated that the brain tissue of the rats in the acupuncture and model groups relatively significantly changed. The Notch1 gene expression level in the acupuncture group was significantly higher than the level in all of the other groups (P<0.01) ; the Hes1 and Hes5 gene expression levels were also higher in the acupuncture group. The expression changes of the Notch1 and Hes1 protein were consistent with that of mRNA. In each experimental group, the mNss score and the pathological results by the HE staining method were consistent with the mRNA results.
CONCLUSIONAcupuncture could significantly promote high expression levels of Notch1, Hes1 and Hes5 in the brain tissue of traumatic brain injury rats. Therefore, acupuncture might be an important intervention for inducing endogenous stem cell proliferation and for promoting nerve repair.
Acupuncture Points ; Acupuncture Therapy ; Animals ; Brain Injuries ; genetics ; pathology ; therapy ; Brain Ischemia ; pathology ; therapy ; Male ; Nerve Regeneration ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Notch ; genetics ; metabolism ; Reperfusion Injury ; genetics ; therapy ; Signal Transduction ; genetics
7.Brain-Derived Glia Maturation Factor β Participates in Lung Injury Induced by Acute Cerebral Ischemia by Increasing ROS in Endothelial Cells.
Fei-Fei XU ; Zi-Bin ZHANG ; Yang-Yang WANG ; Ting-Hua WANG
Neuroscience Bulletin 2018;34(6):1077-1090
Brain damage can cause lung injury. To explore the mechanism underlying the lung injury induced by acute cerebral ischemia (ACI), we established a middle cerebral artery occlusion (MCAO) model in male Sprague-Dawley rats. We focused on glia maturation factor β (GMFB) based on quantitative analysis of the global rat serum proteome. Polymerase chain reaction, western blotting, and immunofluorescence revealed that GMFB was over-expressed in astrocytes in the brains of rats subjected to MCAO. We cultured rat primary astrocytes and confirmed that GMFB was also up-regulated in primary astrocytes after oxygen-glucose deprivation (OGD). We subjected the primary astrocytes to Gmfb RNA interference before OGD and collected the conditioned medium (CM) after OGD. We then used the CM to culture pulmonary microvascular endothelial cells (PMVECs) acquired in advance and assessed their status. The viability of the PMVECs improved significantly when Gmfb was blocked. Moreover, ELISA assays revealed an elevation in GMFB concentration in the medium after OGD. Cell cultures containing recombinant GMFB showed increased levels of reactive oxygen species and a deterioration in the state of the cells. In conclusion, GMFB is up-regulated in astrocytes after ACI, and brain-derived GMFB damages PMVECs by increasing reactive oxygen species. GMFB might thus be an initiator of the lung injury induced by ACI.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain Ischemia
;
complications
;
pathology
;
Bronchoalveolar Lavage Fluid
;
Cell Hypoxia
;
physiology
;
Cells, Cultured
;
Cerebrovascular Circulation
;
physiology
;
Chromatography, High Pressure Liquid
;
Culture Media, Conditioned
;
pharmacology
;
Disease Models, Animal
;
Endothelial Cells
;
metabolism
;
Gene Expression Regulation
;
physiology
;
Glia Maturation Factor
;
metabolism
;
In Situ Nick-End Labeling
;
Lung Injury
;
etiology
;
metabolism
;
pathology
;
Male
;
Neuroglia
;
metabolism
;
Neurologic Examination
;
Peroxidase
;
metabolism
;
Proteome
;
RNA Interference
;
physiology
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Tandem Mass Spectrometry
8.Clinics in diagnostic imaging (193). Sporadic Creutzfeldt-Jakob disease (sCJD).
Jun Si Yuan LI ; Kheng Choon LIM ; Winston Eng Hoe LIM ; Robert Chun CHEN
Singapore medical journal 2018;59(12):634-641
A 68-year-old man presented with a three-week history of rapidly progressive dementia, gait ataxia and myoclonus. Subsequent electroencephalography showed periodic sharp wave complexes, and cerebrospinal fluid assay revealed the presence of a 14-3-3 protein. A probable diagnosis of sporadic Creutzfeldt-Jakob disease was made, which was further supported by magnetic resonance (MR) imaging of the brain showing asymmetric signal abnormality in the cerebral cortices and basal ganglia. The aetiology, clinical features, diagnostic criteria, various MR imaging patterns and radiologic differential diagnosis of sporadic Creutzfeldt-Jakob disease are discussed in this article.
Aged
;
Brain
;
pathology
;
Cerebral Cortex
;
Cerebrospinal Fluid
;
metabolism
;
Creutzfeldt-Jakob Syndrome
;
diagnostic imaging
;
Dementia
;
physiopathology
;
Diagnosis, Differential
;
Diffusion Magnetic Resonance Imaging
;
Electroencephalography
;
Humans
;
Hypoxia-Ischemia, Brain
;
diagnostic imaging
;
Male
;
Prion Diseases
;
physiopathology
9.Role of c-Jun N-terminal kinase-mediated FOXO3a nuclear translocation in neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage.
De-Yuan LI ; Jin-Lin WU ; Li-Li LUO ; Li-Na QIAO ; Zhong-Qiang LIU ; Guo-Yan LU ; Yang WANG
Chinese Journal of Contemporary Pediatrics 2017;19(4):458-462
OBJECTIVETo explore the mechanisms of neuroprotective effects of c-Jun N-terminal kinase (JNK)/FOXO3a transcription factor signaling pathway inhibition on hypoxic-ischemic neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage (HIBD).
METHODSSixty-four 7-day-old Sprague-Dawley rats were divided into four groups: hypoxia-ischemia (HI), sham-operated, JNK specific inhibitor AS601245-treated, and DMSO vehicle. Rats' cerebral cortexes were collected at 24 hours after HI. Western blot was used to detect the protein expression of JNK, p-JNK, FOXO3a, nuclear and cytoplasmic FOXO3a, Bim, and CC3. TUNEL staining was used to detect the apoptotic cells.
RESULTSCompared with the sham-operated group, p-JNK protein increased (P<0.01), nuclear protein of FOXO3a increased (P<0.01), cytoplasmic protein decreased (P<0.01), and pro-apoptotic proteins Bim and CC3 increased 24 hours after HI (P<0.01). Compared with the HI and DMSO vehicle groups, p-JNK protein was reduced (P<0.01), nuclear protein of FOXO3a was also reduced (P<0.01), cytoplasmic protein increased (P<0.01), and Bim and CC3 proteins decreased (P<0.01) in the AS601245-treated group 24 hours after HI. TUNEL positive cells were reduced in the AS601245-treated rats compared with the HI and DMSO vehicle groups 24 hours after HI (P<0.01).
CONCLUSIONSJNK activity increases in the neonatal rat brain with HI damage. JNK activity inhibition can inhibit FOXO3a translocation from cytoplasm to nucleus and downregulate the levels of pro-apoptotic proteins Bim and CC3, leading to the reduction of neuronal apoptosis.
Active Transport, Cell Nucleus ; Animals ; Animals, Newborn ; Apoptosis ; Cell Nucleus ; metabolism ; Female ; Forkhead Box Protein O3 ; metabolism ; Hypoxia-Ischemia, Brain ; pathology ; JNK Mitogen-Activated Protein Kinases ; physiology ; Male ; Neurons ; pathology ; Rats ; Rats, Sprague-Dawley
10.Recombinant Human Erythropoietin Augments Neovascularization Responses in a Neonatal Rat Model of Premature Brain Damage by Phosphatidylinositol 3 Kinase/Akt Pathway.
Da-Fan YU ; Li-Hua ZHU ; Li JIANG
Chinese Medical Journal 2017;130(7):854-858
BACKGROUNDRecombinant human-erythropoietin (rh-EPO) has therapeutic efficacy for premature infants with brain damage during the active rehabilitation and anti-inflammation. In the present study, we found that the rh-EPO was related to the promotion of neovascularization. Our aim was to investigate whether rh-EPO augments neovascularization in the neonatal rat model of premature brain damage through the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway.
METHODSPostnatal day 5 (PD5), rats underwent permanent ligation of the right common carotid artery and were exposed to hypoxia for 2 h. All the rat pups were randomized into five groups as follows: (1) control group; (2) hypoxia-ischemic (HI) group; (3) HI + LY294002 group; (4) HI + rh-EPO group; and (5) HI + rh-EPO + LY294002 group. The phospho-Akt protein was tested 90 min after the whole operation, and CD34, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor (VEGF) were also tested 2 days after the whole operation.
RESULTSIn the hypoxic and ischemic zone of the premature rat brain, the rh-EPO induced CD34+ cells to immigrate to the HI brain zone (P < 0.05) and also upregulated the VEGFR2 protein expression (P < 0.05) and VEGF mRNA level (P < 0.05) through the PI3K/Akt (P < 0.05) signaling pathway when compared with other groups.
CONCLUSIONSThe rh-EPO treatment augments neovascularization responses in the neonatal rat model of premature brain damage through the PI3K/Akt signaling pathway. Besides, the endogenous EPO may exist in the HI zone of rat brain and also has neovascularization function through the PI3K/Akt signaling pathway.
Animals ; Animals, Newborn ; Antigens, CD34 ; metabolism ; Brain ; drug effects ; metabolism ; pathology ; Disease Models, Animal ; Erythropoietin ; genetics ; metabolism ; therapeutic use ; Female ; Humans ; Hypoxia-Ischemia, Brain ; drug therapy ; metabolism ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinase ; metabolism ; Pregnancy ; Proto-Oncogene Proteins c-akt ; metabolism ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins ; genetics ; metabolism ; therapeutic use ; Signal Transduction ; drug effects ; Vascular Endothelial Growth Factor A ; genetics ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism

Result Analysis
Print
Save
E-mail