1.Brain injury biomarkers and applications in neurological diseases.
Han ZHANG ; Jing WANG ; Yang QU ; Yi YANG ; Zhen-Ni GUO
Chinese Medical Journal 2025;138(1):5-14
Neurological diseases are a major health concern, and brain injury is a typical pathological process in various neurological disorders. Different biomarkers in the blood or the cerebrospinal fluid are associated with specific physiological and pathological processes. They are vital in identifying, diagnosing, and treating brain injuries. In this review, we described biomarkers for neuronal cell body injury (neuron-specific enolase, ubiquitin C-terminal hydrolase-L1, αII-spectrin), axonal injury (neurofilament proteins, tau), astrocyte injury (S100β, glial fibrillary acidic protein), demyelination (myelin basic protein), autoantibodies, and other emerging biomarkers (extracellular vesicles, microRNAs). We aimed to summarize the applications of these biomarkers and their related interests and limits in the diagnosis and prognosis for neurological diseases, including traumatic brain injury, status epilepticus, stroke, Alzheimer's disease, and infection. In addition, a reasonable outlook for brain injury biomarkers as ideal detection tools for neurological diseases is presented.
Humans
;
Biomarkers/cerebrospinal fluid*
;
Nervous System Diseases/diagnosis*
;
Brain Injuries/metabolism*
;
Phosphopyruvate Hydratase/cerebrospinal fluid*
;
Glial Fibrillary Acidic Protein/blood*
;
S100 Calcium Binding Protein beta Subunit/blood*
;
tau Proteins/cerebrospinal fluid*
;
Ubiquitin Thiolesterase/blood*
;
Myelin Basic Protein/cerebrospinal fluid*
;
Neurofilament Proteins/blood*
;
MicroRNAs/blood*
;
Brain Injuries, Traumatic/metabolism*
2.Effect of moxibustion at "Shenque" (CV8) on the expression of BDNF and c-fos in the urinary control brain regions of rats with neurogenic bladder after spinal cord injury.
Han YU ; Yuanbo FU ; Huilin LIU ; Yuzhuo ZHANG ; Yutong NI ; Qingdai LI ; Yi XU
Chinese Acupuncture & Moxibustion 2025;45(5):638-645
OBJECTIVE:
To observe the effects of moxibustion at "Shenque" (CV8) on urodynamics and the expression of brain-derived neurotrophic factor (BDNF) and immediate early gene (c-fos) in pontine micturition center (PMC), periaqueductal gray (PAG), medial prefrontal cortex (mPFC) of neurogenic bladder (NB) rats after spinal cord injury.
METHODS:
Twenty-four SPF female SD rats were randomly divided into a sham-operation group (6 rats) and a modeling group (18 rats). In the modeling group, T9 complete spinal cord transection method was used to establish a neurogenic detrusor overactivity model, and the 12 rats with successful modeling were randomized into a model group and a moxibustion group, with 6 rats in each group. The rats in the moxibustion group were treated with ginger/salt-insulated moxibustion at "Shenque" (CV8), and 4 consecutive moxa cones were delivered in one intervention. Moxibustion was operated once daily and for 14 days. After intervention completion, the urodynamic indexes of rats in each group were detected. Fluorescence quantitative PCR was used to detect the mRNA expression of BDNF and c-fos in PMC, PAG and mPFC in rats. Western blot was used to detect the protein expression of BDNF and c-fos in PMC, PAG and mPFC.
RESULTS:
The rats in the sham-operation group did not show phasic detrusor contraction during bladder filling. Compared with the model group, the frequency and amplitude of the phasic detrusor contraction were reduced 5 min before urine leakage in the rats of the moxibustion group (P<0.05), and the duration of the first phasic detrusor contraction during bladder filling was prolonged (P<0.05). Compared with the sham-operation group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC increased in the model group (P<0.05). Compared with the model group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC decreased in the moxibustion group (P<0.05).
CONCLUSION
Moxibustion at "Shenque" (CV8) can improve the phasic contraction during bladder filling in NB rats after spinal cord injury, possibly by down-regulating the mRNA and protein expression of BDNF and c-fos in PMC, PAG, and mPFC.
Animals
;
Moxibustion
;
Female
;
Rats
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Rats, Sprague-Dawley
;
Acupuncture Points
;
Spinal Cord Injuries/metabolism*
;
Urinary Bladder, Neurogenic/etiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Humans
;
Urinary Bladder/physiopathology*
;
Brain/metabolism*
;
Urination
3.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
4.Homer 1a overexpression alleviates nerve injury in mice with traumatic brain injury by regulating autophagy mediated by PI3K/AKT/mTOR pathway.
Yuan WANG ; Mengyang WANG ; Xiumin ZHANG ; Ming LUO
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):31-37
Objective To investigate the effects and molecular mechanism of Homer protein homolog 1a (Homer 1a) overexpression on nerve injury in mice with traumatic brain injury (TBI). Methods Sixty male C57BL/6 mice were randomly divided into five groups: sham group, TBI group, empty lentivirus (Lv-NC) group, Homer 1a overexpression lentivirus (Lv-Homer 1a) group and Lv-Homer 1a + 740 Y-P group, with 12 mice in each group. The lentivirus was orthotopic injected into the cerebral cortex of mice 5 d before modeling, while 740 Y-P was injected intraperitoneally 1 d before modeling. The TBI model was established using the free-fall impact method, and the modified neurological severity scores (mNSS) of the mice was assessed 72 h post-surgery. The water content of brain tissue was quantified, and the histopathological damage and neuronal loss in brain tissue were assessed using HE staining and Nissl staining respectively. The formation of autophagosomes in brain tissue was observed by transmission electron microscopy. The protein expression levels of Homer 1a, microtubule-associated protein 1 light chain 3B (LC3B), Beclin 1, phosphatidylinositol 3-kinase (PI3K), phosphorylation PI3K(p-PI3K), protein kinase B (AKT), p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in brain tissue were detected by Western blot analysis. Results Compared to the sham group, the mice in the TBI group exhibited a significant increase in mNSS and cerebral water content. Moreover, severe brain tissue pathological damage was observed, accompanied by a substantial loss of neurons and an increase in autophagosome formation. The protein expressions of Homer 1a and Beclin 1, as well as the protein ratio of LC3B-II/LC3B-I, in brain tissues were significantly elevated, while the protein ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were significantly reduced. Compared to the TBI group, the Lv-Homer 1a group exhibited reduced mNSS and brain water content. Additionally, there was an improvement in pathological brain tissue damage and neuron loss. Furthermore, there was an increase in autophagosome formation and expression of autophagy-related proteins, while the protein ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR were decreased. Compared to the Lv-Homer 1a group, the nerve injury in the Lv-Homer 1a+740 Y-P group was exacerbated, accompanied by a reduction in autophagosome formation and expression of autophagy-related proteins, while the PI3K/AKT/mTOR signaling pathway was activated. Conclusion Overexpression of Homer 1a effectively mitigates neurological damage in TBI mice, potentially through modulation of autophagy mediated by the PI3K/AKT/mTOR signaling pathway.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Autophagy
;
Brain Injuries, Traumatic/pathology*
;
Male
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Homer Scaffolding Proteins/metabolism*
;
Mice, Inbred C57BL
;
Signal Transduction
;
Mice
5.Xuefu Zhuyu Decoction Improves Blood-Brain Barrier Integrity in Acute Traumatic Brain Injury Rats via Regulating Adenosine.
Yang WANG ; Qiu-Ju YAN ; En HU ; Yao WU ; Ruo-Qi DING ; Quan CHEN ; Meng-Han CHENG ; Xi-Ya YANG ; Tao TANG ; Teng LI
Chinese journal of integrative medicine 2025;31(7):624-634
OBJECTIVE:
To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
METHODS:
Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg). The administration was performed by intragastric administration for 3 days. Neurological functions tests, histology staining, coagulation and haemorheology assays, and Western blot were examined. Untargeted metabolomics was employed to identify metabolites. The key metabolite was validated by enzyme-linked immunosorbent assay and immunofluorescence.
RESULTS:
XFZYD significantly alleviated neurological dysfunction in CCI model rats (P<0.01) but had no impact on coagulation function. As evidenced by Evans blue and IgG staining, XFZYD effectively prevented blood-brain barrier (BBB) disruption (P<0.05, P<0.01). Moreover, XFZYD not only increased the expression of collagen IV, occludin and zona occludens 1 but also decreased matrix metalloproteinase-9 (MMP-9) and cyclooxygenase-2 (COX-2), which protected BBB integrity (all P<0.05). Nine potential metabolites were identified, and all of them were reversed by XFZYD. Adenosine was the most significantly altered metabolite related to BBB repair. XFZYD significantly reduced the level of equilibrative nucleoside transporter 2 (ENT2) and increased adenosine (P<0.01), which may improve BBB integrity.
CONCLUSIONS
XFZYD ameliorates BBB disruption after TBI by decreasing the levels of MMP-9 and COX-2. Through further exploration via metabolomics, we found that XFZYD may exert a protective effect on BBB by regulating adenosine metabolism via ENT2.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Blood-Brain Barrier/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Adenosine/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
Rats
6.Buyang Huanwu Decoction Promotes Recovery after Spinal Cord Injury by Regulating cAMP/PKA/NF-κB p65 Pathway.
Si-Yuan LI ; Ting-Ting FAN ; Jian YIN ; Cai-Yun WAN ; Mei-Li LI ; Shuai-Shuai XIA ; Qiang LI ; Liang LI
Chinese journal of integrative medicine 2025;31(7):635-643
OBJECTIVE:
To investigate whether Buyang Huanwu Decoction (BYHWD) had a good curative effect on the neuroprotection of red nucleus neurons after spinal cord injury (SCI) and the possible molecular mechanism.
METHODS:
Ninety male Sprague-Dawley rats were divided into 5 groups (n=18 per group) according to a random number table, including the control, model, low- (12.78 g/kg, BL group), medium- (25.65 g/kg, BM group), and high-dose BYHWD groups (51.30 g/kg, BH group). A rubrospinal tract transection model in rats was established, and different doses of BYHWD were intragastrically administrated for 4 weeks. The forelimb locomotor function was recorded using the spontaneous vertical exploration test. Cyclic adenosine monophosphate (cAMP) level in red nucleus was detected through an enzyme-linked immunosorbent assay. The morphology and number of red nucleus neurons were observed using Nissl's staining and axonal retrograde tracing by Fluoro-Gold (FG). The expression of cAMP-dependent protein kinase A (PKA), nuclear factor kappa-B (NF-κB) p65, and brain-derived neurotrophic factor (BDNF) in red nucleus were detected using immunohistochemistry and quantitative real-time polymerase chain reaction.
RESULTS:
Compared with the control group, the utilization rate of bilateral forelimbs, unilateral right forelimbs, proportion of FG-labeled positive neurons, cAMP level, protein expressions of PKA and BDNF, and BDNF mRNA expression were significantly decreased in the model group (P<0.01), while NF-κB p65 was increased in the model group (P<0.01). Compared with the model group, the utilization rate of bilateral forelimbs and unilateral right forelimbs were significantly higher in the BL, BM and BH groups (P<0.01), the proportion of FG-labeled positive neurons, cAMP level, protein expressions of PKA and BDNF and BDNF mRNA expression in all BYHWD groups were increased (P<0.05 or P<0.01), while NF-κB p65 were decreased in all BYHWD groups (P<0.05 or P<0.01).
CONCLUSIONS
BYHWD possesses a sound neuroprotective effect on red nucleus neurons after SCI, and the efficacy was dose-related. The mechanism may be related to regulating the cAMP/PKA/NF-κ B p65 signaling pathway, finally promoting expression of BDNF.
Animals
;
Spinal Cord Injuries/pathology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Rats, Sprague-Dawley
;
Male
;
Cyclic AMP/metabolism*
;
Transcription Factor RelA/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Signal Transduction/drug effects*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Red Nucleus/metabolism*
;
Recovery of Function/drug effects*
;
Neurons/metabolism*
;
Rats
7.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
8.WNK1 Alleviates Chloride Efflux-Induced NLRP3 Inflammasome Activation and Subsequent Neuroinflammation in Early Brain Injury Following Subarachnoid Hemorrhage.
Panpan ZHAO ; Huimiao FENG ; Xinyu ZHOU ; Jingyuan ZHOU ; Fangbo HU ; Taotao HU ; Yong SUN
Neuroscience Bulletin 2025;41(9):1570-1588
The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role in the prognosis of subarachnoid hemorrhage (SAH). WNK1 kinase negatively regulates NLRP3 in various inflammatory conditions, but its role in early brain injury (EBI) after SAH remains unclear. In this study, we used an in vivo SAH model in rats/mice and AAV-WNK1 intraventricular injection to investigate its neuroprotective mechanisms. WNK1 expression was significantly reduced in SAH patient blood and SAH model brain tissue, correlating negatively with microglial activation. AAV-WNK1 alleviated brain edema, neuronal necrosis, behavioral deficits, and inflammation by inhibiting NLRP3 inflammasome activation. In hemin-stimulated BV-2 cells, WNK1 overexpression reduced NLRP3 activation and inflammatory cytokines. Chloride counteracted WNK1's inhibitory effects, and WNK1 suppressed P2X7R-induced NLRP3 activation. Mechanistically, WNK1 functioned via the OXSR1/STK39 pathway. These findings highlight WNK1 as a key regulator of intracellular chloride balance and neuroinflammation, presenting a potential therapeutic target for SAH treatment.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Subarachnoid Hemorrhage/complications*
;
Inflammasomes/metabolism*
;
Rats
;
Mice
;
Neuroinflammatory Diseases/metabolism*
;
WNK Lysine-Deficient Protein Kinase 1/genetics*
;
Male
;
Humans
;
Chlorides/metabolism*
;
Mice, Inbred C57BL
;
Rats, Sprague-Dawley
;
Brain Injuries/metabolism*
;
Microglia/metabolism*
;
Protein Serine-Threonine Kinases
9.Fexolone inhibits neuronal ferroptosis through the Nrf2/HO-1/GPX4 pathway to alleviates sepsis-associated brain injury.
Rao SUN ; Jinyao ZHOU ; Yang JIAO ; Kaixuan NIU ; Cheng YUAN ; Ximing DENG
Chinese Critical Care Medicine 2025;37(5):452-457
OBJECTIVE:
To observe the protective effect of Fisetin on sepsis-associated brain injury and explore its possible mechanism from the perspective of ferroptosis.
METHODS:
Sprague-Dawley (SD) rats (6-8-week-old male) were randomly divided into three groups: sham operation group (Sham group), colonic ligation and puncture (CLP) induced sepsis model group (CLP group) and Fisetin preprocessing group (CLP+Fisetin group), with 18 rats in each group (12 for observing survival rate and 6 for indicator testing). The CLP+Fisetin group was given Fisetin solution 50 mg×kg-1×d-1 by gavage continuously for 5 days before CLP, with dimethyl sulfoxide (DMSO) as the solute, while Sham group and CLP group were given the same dose of DMSO. The model was established at 2 hours after the last gavage. The general condition of each group of rats were observed, and the 10-day mortality were record. The behavioral testing (new object recognition experiment, elevated cross maze experiment) were performed after 7 days of modeling. After 24 hours of modeling, nerve reflex scoring was performed, and then the rats were euthanized and brain tissue was collected. The pathological changes of brain tissue were observed under a microscope by hematoxylin-eosin (HE) staining, the deposition of iron ion in brain tissue was observed by Prussian blue staining. The content of iron in brain tissue was determined by tissue iron kit, and the content of malondialdehyde (MDA) in brain tissue was determined by colorimetry. The expressions of tumor necrosis factor-α (TNF-α), neuron damage marker S100β, nuclear factor E2-related factor 2 (Nrf2), heme oxygenases-1 (HO-1) and glutathione peroxidase 4 (GPX4) were detected by Western blotting.
RESULTS:
On day 10 post-operation, 12, 3, and 7 animals survived in the Sham group, CLP group, and CLP+Fisetin group, respectively. Compared with the Sham group, rats in the CLP group showed significantly decreased nerve reflex score, new object discrimination index and open arm dwell time. HE staining showed arranged disorderly of neuronal cells, cytoplasm deep staining, nuclear condensation, unclear structures, neuron loss, and significant inflammation in the hippocampus in the hippocampus. Prussian blue staining showed iron ion deposition in the brain tissue. The contents of iron and MDA in brain tissue were elevated, and the expressions of TNF-α and S100β were up-regulated, while the expressions of Nrf2, HO-1, and GPX4 were down-regulated. Compared with the CLP group, the CLP+Fisetin group showed significantly increased neurological reflex score (7.33±1.15 vs. 4.67±1.53), improved new object discrimination index (0.44±0.02 vs. 0.32±0.04), and longer open arm dwell time (minutes: 78.33±9.29 vs. 41.15±9.64). Neuronal cells in the hippocampus were more organized, with less cytoplasmic staining, nuclear condensation, reduced neuronal loss, and fewer inflammatory cells. Iron ion deposition was reduced, and the contents of iron ions and MDA in brain tissue were decreased [iron ion (μg/g): 151.27±14.90 vs. 224.69±17.64, MDA (μmol/g): 470.0±44.3 vs. 709.3±65.4]. The expressions of TNF-α and S100β were significantly decreased (TNF-α/GAPDH: 0.651±0.060 vs. 0.896±0.022, S100β/GAPDH: 0.685±0.032 vs. 0.902±0.014), while the expressions of Nrf2, HO-1, and GPX4 were significantly increased (Nrf2/GAPDH: 0.708±0.108 vs. 0.316±0.112, HO-1/GAPDH: 0.694±0.022 vs. 0.538±0.024, GPX4/GAPDH: 0.620±0.170 vs. 0.317±0.039). All differences were statistically significant (all P < 0.05).
CONCLUSION
Fisetin pretreatment can inhibit ferroptosis and reduce sepsis-associated brain injury by Nrf2/HO-1/GPX4 pathway.
Animals
;
Ferroptosis/drug effects*
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/metabolism*
;
Sepsis/complications*
;
Male
;
Rats
;
Phospholipid Hydroperoxide Glutathione Peroxidase
;
Neurons/drug effects*
;
Signal Transduction
;
Brain Injuries/metabolism*
;
Flavonols
;
Flavonoids/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Heme Oxygenase (Decyclizing)
10.Research progress of neurotransmitters in lung injury after traumatic brain injury.
Le CAO ; Haikun ZHANG ; Jinxiang YU ; Pengcheng MA ; Lifeng JIA ; Tao ZHAO
Chinese Critical Care Medicine 2025;37(10):982-988
Traumatic brain injury (TBI), as a significant central nervous system damage disease with high frequency in the world, leads to a huge number of patients with impaired health and lower quality of life every year. Lung injury is a common and dangerous consequence, which dramatically raises the mortality of patients. Discovering the pathophysiology of lung injury after TBI and discovering viable therapeutic targets has become an important need for clinical diagnosis and therapy. Neurotransmitters, as the fundamental chemical agents of the nervous system for signal transmission, not only govern neuronal activity and apoptosis in TBI but also significantly influence the pathophysiological mechanisms of lung injury subsequent to TBI. The imbalance is intricately linked to the onset and progression of lung damage. This paper systematically reviews the clinical characteristics and predominant pathogenesis of lung injury following TBI, emphasizing the role of key neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA), norepinephrine (NE), dopamine (DA), and acetylcholine (ACh), in lung injury post-TBI. It examines their influence on inflammatory response, vascular permeability, and pulmonary circulation function. Additionally, the paper evaluates the research advancements and potential applications of targeted therapeutic strategies for various neurotransmitter systems, such as receptor antagonists, transporter inhibitors, and neurotransmitter analogues. This research aims to offer a theoretical framework for clarifying the neural regulatory mechanisms of lung injury following TBI and to establish a basis for the development of novel therapeutic strategies and enhancement of the prognosis of the patients.
Humans
;
Brain Injuries, Traumatic/metabolism*
;
Neurotransmitter Agents/metabolism*
;
Lung Injury/metabolism*
;
gamma-Aminobutyric Acid/metabolism*
;
Glutamic Acid/metabolism*
;
Norepinephrine/metabolism*
;
Dopamine/metabolism*
;
Acetylcholine/metabolism*

Result Analysis
Print
Save
E-mail