1.Effect of moxibustion at "Shenque" (CV8) on the expression of BDNF and c-fos in the urinary control brain regions of rats with neurogenic bladder after spinal cord injury.
Han YU ; Yuanbo FU ; Huilin LIU ; Yuzhuo ZHANG ; Yutong NI ; Qingdai LI ; Yi XU
Chinese Acupuncture & Moxibustion 2025;45(5):638-645
OBJECTIVE:
To observe the effects of moxibustion at "Shenque" (CV8) on urodynamics and the expression of brain-derived neurotrophic factor (BDNF) and immediate early gene (c-fos) in pontine micturition center (PMC), periaqueductal gray (PAG), medial prefrontal cortex (mPFC) of neurogenic bladder (NB) rats after spinal cord injury.
METHODS:
Twenty-four SPF female SD rats were randomly divided into a sham-operation group (6 rats) and a modeling group (18 rats). In the modeling group, T9 complete spinal cord transection method was used to establish a neurogenic detrusor overactivity model, and the 12 rats with successful modeling were randomized into a model group and a moxibustion group, with 6 rats in each group. The rats in the moxibustion group were treated with ginger/salt-insulated moxibustion at "Shenque" (CV8), and 4 consecutive moxa cones were delivered in one intervention. Moxibustion was operated once daily and for 14 days. After intervention completion, the urodynamic indexes of rats in each group were detected. Fluorescence quantitative PCR was used to detect the mRNA expression of BDNF and c-fos in PMC, PAG and mPFC in rats. Western blot was used to detect the protein expression of BDNF and c-fos in PMC, PAG and mPFC.
RESULTS:
The rats in the sham-operation group did not show phasic detrusor contraction during bladder filling. Compared with the model group, the frequency and amplitude of the phasic detrusor contraction were reduced 5 min before urine leakage in the rats of the moxibustion group (P<0.05), and the duration of the first phasic detrusor contraction during bladder filling was prolonged (P<0.05). Compared with the sham-operation group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC increased in the model group (P<0.05). Compared with the model group, the mRNA and protein expression of BDNF and c-fos in PMC, PAG and mPFC decreased in the moxibustion group (P<0.05).
CONCLUSION
Moxibustion at "Shenque" (CV8) can improve the phasic contraction during bladder filling in NB rats after spinal cord injury, possibly by down-regulating the mRNA and protein expression of BDNF and c-fos in PMC, PAG, and mPFC.
Animals
;
Moxibustion
;
Female
;
Rats
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Rats, Sprague-Dawley
;
Acupuncture Points
;
Spinal Cord Injuries/metabolism*
;
Urinary Bladder, Neurogenic/etiology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Humans
;
Urinary Bladder/physiopathology*
;
Brain/metabolism*
;
Urination
2.Optical coherence tomography angiography and microvessel density quantification in penumbra after traumatic brain injury in rats.
Peng ZHONG ; Xiaodan HU ; Zhenzhou WANG
Journal of Peking University(Health Sciences) 2025;57(2):262-266
OBJECTIVE:
To observe the dynamic changes of microvascular injury and repair in the penumbra of traumatic brain injury (TBI) rats with effective cerebral perfusion microvascular imaging using optical coherence tomography angiography (OCTA).
METHODS:
Transparent closed cranial windows were placed in craniotomy rats after TBI caused by weight drop. All the rats in TBI group and control group underwent head MRI examination on the first postoperative day, and the changes of cerebral cortical microvessel density were measured by OCTA through cranial windows on d0, d2, d4, d6, and d8. On the second day after the operation, the same number of rats in the two groups were selected to complete the immunohistochemical staining of brain tissue with pimonidazole, an indicator of hypoxia.
RESULTS:
MRI T2W1 and immunohistochemical staining demonstrated that edema and hypoxia in the traumatic brain tissue extended deeply throughout the entire cortex. OCTA showed that the cortical surface veins of the rats in both groups were significantly dilated and tortuous after operation, and recovered to the postoperative day level on d8. The effective perfusion microvessel density of the rats in both groups gradually recovered after a temporary decrease, and the TBI group decreased from 39.38%±4.48% on d0 to 27.84%±6.01% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 61.71%±7.69% on d8, which was significantly higher than that on d0, d2, and d4 (P < 0.05). The control group decreased from 44.59%±7.78% on d0 to 36.69%±5.49% on d2, which was significantly lower than that on d0, d6, and d8 (P < 0.05). The highest value was 51.92%±5.96% on d8, which was significantly higher than that on d2, and d4 (P < 0.05). Comparing the two groups, the effective perfusion microvessel density in the TBI group was significantly lower than that in the control group on d2 (P=0.021), and significantly higher than that in the control group on d8 (P=0.030).
CONCLUSION
OCTA can be used as a method of imaging and measurement of effective perfusion microvessels in the injured cerebral cortex of TBI rats. After TBI, the effective perfusion microvessel density in the wound penumbra gradually recovered after decreasing, and increased significantly on d8.
Animals
;
Brain Injuries, Traumatic/physiopathology*
;
Rats
;
Tomography, Optical Coherence/methods*
;
Male
;
Rats, Sprague-Dawley
;
Microvessels/pathology*
;
Microvascular Density
;
Cerebral Cortex/blood supply*
;
Cerebrovascular Circulation
3.Impulse Control and ERP Characteristics of Patients with Mental Disorder Caused by Traumatic Brain Injury.
Hong Fei SONG ; Xi DENG ; Ning YANG ; Bo HAO ; Yu Bo HU ; Yan Wei SHI ; Li XUE ; Hu ZHAO
Journal of Forensic Medicine 2020;36(3):326-332
Objective To explore the impulse control and event-related potential (ERP) characteristics of patients with mental disorders caused by traumatic brain injury (TBI) in forensic psychiatry identification and to provide objective auxiliary indicators for forensic psychiatry identification. Methods Thirty patients (TBI group) with mental disorders caused by traumatic brain injury, who were identified as mild psychiatric impairment by judicial psychiatry, including 24 males and 6 females, as well as the thirty people in the control group participated in the study. All the participants completed Barratt Impulsiveness Scale-11 (BIS-11) and ERP induced by Go/NoGo tasks. BIS-11 and ERP data were collected and analyzed. Results The results of the BIS-11 showed that the total score and subscale scores of the TBI group were higher compared to the control group (P<0.05). Moreover, the TBI group exhibited significantly lower NoGo-N2 amplitude and lower NoGo-P3 amplitude than the control group. The NoGo-N2 amplitude was larger than the Go-N2 amplitude, and the NoGo-P3 amplitude was larger than the Go-P3 amplitude in both groups (P<0.05). Conclusion Traumatic brain injury could impair impulse control of mild psychiatric impairment patients, and the amplitudes of NoGo-N2 and NoGo-P3 could be important parameters to evaluate the impulse control of patients with mental disorders caused by traumatic brain injury.
Brain Injuries, Traumatic/complications*
;
Electroencephalography
;
Evoked Potentials
;
Female
;
Humans
;
Inhibition, Psychological
;
Male
;
Mental Disorders/physiopathology*
;
Neuropsychological Tests
;
Reaction Time
4.Influence of sensorimotor adaptation and learning process for rehabilitation on the functional mobility of a patient with traumatic brain injury: A case report.
Chinese Journal of Traumatology 2018;21(4):246-248
This case report reveals the implementation of sensorimotor adaptation and learning process for rehabilitation in a patient with traumatic brain injury to achieve optimum recovery which is permanent in nature in compliance to the disability rating scale. A twenty two year old gentleman who had a history of fall was diagnosed as having subarachnoid hemorrhage along with diffuse axonal injury of the brain and bilateral lung contusion with pneumothorax. He underwent a total of ten months of sensorimotor adaptation and learning process for rehabilitation, which achieved functional mobility with a walker.
Adult
;
Brain Injuries, Traumatic
;
physiopathology
;
rehabilitation
;
Disability Evaluation
;
Glasgow Coma Scale
;
Humans
;
Learning
;
Male
;
Recovery of Function
5.Spatial Properties of Mismatch Negativity in Patients with Disorders of Consciousness.
Xiaoyu WANG ; Rao FU ; Xiaoyu XIA ; Xueling CHEN ; Han WU ; Nicole LANDI ; Ken PUGH ; Jianghong HE ; Fengyu CONG
Neuroscience Bulletin 2018;34(4):700-708
In recent decades, event-related potentials have been used for the clinical electrophysiological assessment of patients with disorders of consciousness (DOCs). In this paper, an oddball paradigm with two types of frequency-deviant stimulus (standard stimuli were pure tones of 1000 Hz; small deviant stimuli were pure tones of 1050 Hz; large deviant stimuli were pure tones of 1200 Hz) was applied to elicit mismatch negativity (MMN) in 30 patients with DOCs diagnosed using the JFK Coma Recovery Scale-Revised (CRS-R). The results showed that the peak amplitudes of MMN elicited by both large and small deviant stimuli were significantly different from baseline. In terms of the spatial properties of MMN, a significant interaction effect between conditions (small and large deviant stimuli) and electrode nodes was centered at the frontocentral area. Furthermore, correlation coefficients were calculated between MMN amplitudes and CRS-R scores for each electrode among all participants to generate topographic maps. Meanwhile, a significant negative correlation between the MMN amplitudes elicited by large deviant stimuli and the CRS-R scores was also found at the frontocentral area. In consequence, our results combine the above spatial properties of MMN in patients with DOCs, and provide a more precise location (frontocentral area) at which to evaluate the correlation between clinical electrophysiological assessment and the level of consciousness.
Acoustic Stimulation
;
Adolescent
;
Adult
;
Aged
;
Auditory Perception
;
physiology
;
Brain Injuries
;
complications
;
physiopathology
;
Consciousness Disorders
;
etiology
;
physiopathology
;
Electroencephalography
;
Evoked Potentials
;
Female
;
Humans
;
Male
;
Middle Aged
;
Neuropsychological Tests
;
Severity of Illness Index
;
Wavelet Analysis
6.Amplitude-Integrated Electroencephalography Predicts Outcome in Patients with Coma After Acute Brain Injury.
Wendong YOU ; Qilin TANG ; Xiang WU ; Junfeng FENG ; Qing MAO ; Guoyi GAO ; Jiyao JIANG
Neuroscience Bulletin 2018;34(4):639-646
Prognostication of coma patients after brain injury is important, yet challenging. In this study, we evaluated the predictive value of amplitude-integrated electroencephalography (aEEG) for neurological outcomes in coma patients. From January 2013 to January 2016, 128 coma patients after acute brain injury were prospectively enrolled and monitored with aEEG. The 6-month neurological outcome was evaluated using the Cerebral Performance Category Scale. aEEG monitoring commenced at a median of 7.5 days after coma onset. Continuous normal voltage predicted a good 6-month neurological outcome with a sensitivity of 93.6% and specificity of 85.2%. In contrast, continuous extremely low voltage, burst-suppression, or a flat tracing was correlated with poor 6-month neurological outcome with a sensitivity of 76.5% and specificity of 100%. In conclusion, aEEG is a promising predictor of 6-month neurological outcome for coma patients after acute brain injury.
Brain
;
physiopathology
;
Brain Injuries
;
complications
;
diagnosis
;
physiopathology
;
Coma
;
diagnosis
;
etiology
;
physiopathology
;
Electroencephalography
;
methods
;
Female
;
Follow-Up Studies
;
Humans
;
Male
;
Middle Aged
;
Neurophysiological Monitoring
;
methods
;
Prognosis
;
Prospective Studies
;
Sensitivity and Specificity
;
Severity of Illness Index
7.Effects of growth differentiation factor-15 (GDF-15) on neurological systems, cardiovascular diseases, and cancer progression.
Acta Physiologica Sinica 2017;69(1):109-121
Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor beta superfamily. GDF-15 expression is dramatically upregulated during acute brain injury, cancer, cardiovascular disease, and inflammation, suggesting its potential value as a disease biomarker. It has been suggested that GDF-15 has neurotropic effects in the nervous system. Our studies showed that GDF-15 modulated the expression of neuronal Kand Caion channels and increased the release of excitatory transmitter in the medial prefrontal cortex of mice. GDF-15 is also involved in the complex modulation of cancer and cardiovascular disease. Here, we reviewed studies involving the modulation of GDF-15 expression and its mechanisms, the primary pathological and physiological functions of GDF-15 in neurological and cardiovascular systems, and its role in cancer progression. The biological effects and the values of GDF-15 in basic research and clinical applications were also addressed.
Animals
;
Brain Injuries
;
physiopathology
;
Calcium Channels
;
metabolism
;
Cardiovascular Diseases
;
physiopathology
;
Disease Progression
;
Growth Differentiation Factor 15
;
metabolism
;
Humans
;
Inflammation
;
Mice
;
Neoplasms
;
physiopathology
;
Nervous System
;
metabolism
;
Potassium Channels
;
metabolism
;
Prefrontal Cortex
;
metabolism
;
Transforming Growth Factor beta
;
Up-Regulation
8.VEGF enhances reconstruction of neurovascular units in the brain after injury.
Zhi-Guang PAN ; Ying MAO ; Feng-Yan SUN
Acta Physiologica Sinica 2017;69(1):96-108
Vascular endothelial growth factor (VEGF) was originally recognized as a substance predominantly with vascular permeability and angiogenesis. Recently, more and more evidence indicated that VEGF is expressed in the neurons of the developing and adult brains. Functional investigation demonstrated that VEGF shows several important effects on the neuronal development and physiological function. For example, VEGF accelerates the development of neurons and neural dendritic and axon growth. Besides, VEGF directly and acutely regulates the functions of multiple ion channels of the neuron membrane and changes neural excitability. In traumatic or ischemic injured brains, VEGF produces neuroprotection, enhances capacity of adult neurogenesis and transformation of astroglial cells into new neurons, which are fundamental basis for re-establishment of neural network. Based on the knowledge obtained from the literatures, we propose that VEGF may play very important roles in neural plasticity in the normal brain, and the reconstruction of neurovascular units and neural repair in the traumatic injured brain. This review mainly focuses on neural activity and repair roles of VEGF in adult mammalian brains. Further study on the mechanism of VEGF's neurobiological effects in the brain will be helpful for understanding the regulation of brain functions and developing new therapeutic strategy for prevention of neurodegeneration of the brain.
Animals
;
Astrocytes
;
cytology
;
Brain Injuries
;
physiopathology
;
Humans
;
Neurogenesis
;
Neuronal Plasticity
;
Neurons
;
cytology
;
Vascular Endothelial Growth Factor A
;
physiology
9.Cellular microparticles and pathophysiology of traumatic brain injury.
Zilong ZHAO ; Yuan ZHOU ; Ye TIAN ; Min LI ; Jing-Fei DONG ; Jianning ZHANG
Protein & Cell 2017;8(11):801-810
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. The finding that cellular microparticles (MPs) generated by injured cells profoundly impact on pathological courses of TBI has paved the way for new diagnostic and therapeutic strategies. MPs are subcellular fragments or organelles that serve as carriers of lipids, adhesive receptors, cytokines, nucleic acids, and tissue-degrading enzymes that are unique to the parental cells. Their sub-micron sizes allow MPs to travel to areas that parental cells are unable to reach to exercise diverse biological functions. In this review, we summarize recent developments in identifying a casual role of MPs in the pathologies of TBI and suggest that MPs serve as a new class of therapeutic targets for the prevention and treatment of TBI and associated systemic complications.
Animals
;
Astrocytes
;
metabolism
;
pathology
;
Biological Transport
;
Blood Coagulation Factors
;
genetics
;
metabolism
;
Brain
;
metabolism
;
pathology
;
physiopathology
;
Brain Injuries, Traumatic
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Cell-Derived Microparticles
;
chemistry
;
metabolism
;
pathology
;
Cytokines
;
blood
;
genetics
;
Disease Models, Animal
;
Disseminated Intravascular Coagulation
;
genetics
;
metabolism
;
pathology
;
physiopathology
;
Gene Expression Regulation
;
Humans
;
Microglia
;
metabolism
;
pathology
;
Neurons
;
metabolism
;
pathology
;
Signal Transduction
10.Imaging Observation of Scalp Acupuncture on Brain Gray Matter Injury in Stroke Patients with Cerebral Infarction.
Yi LANG ; Fang-yuan CUI ; Kuang-shi LI ; Zhong-jian TAN ; Yi-huai ZOU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(3):294-299
OBJECTIVETo study features of brain gray matter injury in cerebral infarction patients and intervention of scalp acupuncture by using voxel-based morphology.
METHODSA total of 16 cerebral infarction patients were recruited in this study, and assigned to the scalp acupuncture group and the control group, 8 in each group. Another 16 healthy volunteers were recruited as a normal group. All patients received scanning of T1 structure. Images were managed using VBM8 Software package. Difference of the gray matter structure was compared among the scalp acupuncture group, the control group, and the healthy volunteers.
RESULTSCompared with healthy volunteers, gray matter injury of cerebral infarction patients mainly occurred in 14 brain regions such as cingulate gyrus, precuneus, cuneus, anterior central gyrus, insular lobe, and so on. They were mainly distributed in affected side. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the scalp acupuncture group still existed in 8 brain regions such as bilateral lingual gyrus, posterior cingulate gyrus, left cuneus, right precuneus, and so on. New gray matter injury occurred in lingual gyrus and posterior cingulate gyrus. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the control group existed in 23 brain regions: bilateral anterior cingulum, caudate nucleus, cuneate lobe, insular lobe, inferior frontal gyrus, medial frontal gyrus, precuneus, paracentral lobule, superior temporal gyrus, middle temporal gyrus, lingual gyrus, right postcentral gyrus, posterior cingulate gyrus, precentral gyrus, middle frontal gyrus, and so on. New gray matter injury still existed in 9 cerebral regions such as lingual gyrus, posterior cingulate gyrus, postcentral gyrus, and so on.
CONCLUSIONSBrain gray matter structure is widely injured after cerebral infarction. Brain gray matter volume gradually decreased as time went by. Combined use of scalp acupuncture might inhibit the progression of gray matter injury more effectively.
Acupuncture Therapy ; Brain ; physiopathology ; Brain Injuries ; therapy ; Cerebral Infarction ; therapy ; Gray Matter ; pathology ; Humans ; Magnetic Resonance Imaging ; Scalp ; Stroke ; therapy

Result Analysis
Print
Save
E-mail