1.Mechanism of Naoxintong Capsules in treatment of rats with multiple cerebral infarctions and myocardial injury based on HIF-1α/VEGF pathway.
Xiao-Lu ZHANG ; Jin-Feng SHANG ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Bo-Hong WANG ; Wan-Ting WEI ; Wen-Bin CHEN ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(7):1889-1899
This study aims to explore whether Naoxintong Capsules improve multiple cerebral infarctions and myocardial injury via promoting angiogenesis, thereby exerting a simultaneous treatment effect on both the brain and heart. Male SD rats were randomly divided into six groups: sham-operated group, model group, high-dose, medium-dose, and low-dose groups of Naoxintong Capsules(440, 220, and 110 mg·kg~(-1)), and nimodipine group(10.8 mg·kg~(-1)). Rat models of multiple cerebral infarctions were established by injecting autologous thrombus, and samples were collected and tested seven days after modeling. Evaluations included multiple cerebral infarction model assessments, neurological function scores, grip strength tests, and rotarod tests, so as to evaluate neuromotor functions. Morphological structures of brain and heart tissue were observed using hematoxylin-eosin(HE) staining, Nissl staining, and Masson staining. Network pharmacology was employed to screen the mechanisms of Naoxintong Capsules in improving multiple cerebral infarctions and myocardial injury. Neuronal and myocardial cell ultrastructures were observed using transmission electron microscopy. Apoptosis rate in brain neuronal cells was detected by TdT-mediated dUTP nick end labeling(TUNEL) staining, and reactive oxygen species(ROS) levels in myocardial cells were measured. Immunofluorescence was used to detect the expression of platelet endothelial cell adhesion molecule-1(CD31), antigen identified by monoclonal antibody Ki67(Ki67), hematopoietic progenitor cell antigen CD34(CD34), and hypoxia inducible factor-1α(HIF-1α) in brain and myocardial tissue. Western blot, and real-time quantitative polymerase chain reaction(RT-qPCR) were used to detect the expression of HIF-1α, vascular endothelial growth factor(VEGF), vascular endothelial growth factor receptor 2(VEGFR2), sarcoma(Src), basic fibroblast growth factor(bFGF), angiopoietin-1(Ang-1), and TEK receptor tyrosine kinase(Tie-2). Compared with the model group, the medium-dose group of Naoxintong Capsules showed significantly lower neurological function scores, increased grip strength, and prolonged time on the rotarod. Pathological damage in brain and heart tissue was reduced, with increased and more orderly arranged mitochondria in neurons and cardiomyocytes. Apoptosis in brain neuronal cells was decreased, and ROS levels in cardiomyocytes were reduced. The microvascular density and endothelial cells of new blood vessels in brain and heart tissue increased, with increased overlapping regions of CD31 and Ki67 expression. The relative protein and mRNA expression levels of HIF-1α, VEGF, VEGFR2, Src, Ang-1, Tie-2, and bFGF were elevated in brain tissue and myocardial tissue. Naoxintong Capsules may improve multiple cerebral infarctions and myocardial injury by mediating HIF-1α/VEGF expression to promote angiogenesis.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Cerebral Infarction/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Capsules
;
Signal Transduction/drug effects*
;
Humans
;
Brain/metabolism*
;
Myocardium/metabolism*
;
Apoptosis/drug effects*
2.Salvianolic Acid B and Ginsenoside Rg1 Combination Attenuates Cerebral Edema Accompanying Glymphatic Modulation.
Lingxiao ZHANG ; Yanan SHAO ; Zhao FANG ; Siqi CHEN ; Yixuan WANG ; Han SHA ; Yuhan ZHANG ; Linlin WANG ; Yi JIN ; Hao CHEN ; Baohong JIANG
Neuroscience Bulletin 2025;41(11):1909-1923
Cerebral edema is characterized by fluid accumulation, and the glymphatic system (GS) plays a pivotal role in regulating fluid transport. Using the Tenecteplase system, magnesium salt of salvianolic acid B/ginsenoside Rg1 (SalB/Rg1) was injected intravenously into mice 4.5 h after middle cerebral artery occlusion and once every 24 h for the following 72 h. GS function was assessed by Evans blue imaging, near-infrared fluorescence region II (NIR-II) imaging, and magnetic resonance imaging (MRI). SalB/Rg1 had significant effects on reducing the infarct volume and hemorrhagic transformation score, improving neurobehavioral function, and protecting tissue structure, especially inhibiting cerebral edema. Meanwhile, the influx/efflux drainage of GS was enhanced by SalB/Rg1 according to NIR-II imaging and MRI. SalB/Rg1 inhibited matrix metalloproteinase-9 (MMP-9) activity, reduced cleaved β-dystroglycan (β-DG), and stabilized aquaporin-4 (AQP4) polarity, which was verified by colocalization with CD31. Our findings indicated that SalB/Rg1 treatment enhances GS function and attenuates cerebral edema, accompanying the regulation of the MMP9/β-DG/AQP4 pathway.
Animals
;
Ginsenosides/administration & dosage*
;
Brain Edema/etiology*
;
Male
;
Benzofurans/administration & dosage*
;
Glymphatic System/diagnostic imaging*
;
Mice
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Aquaporin 4/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Matrix Metalloproteinase 9/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Depsides
3.Single-Cell Mapping of Brain Myeloid Cell Subsets Reveals Key Transcriptomic Changes Favoring Neuroplasticity after Ischemic Stroke.
Fangxi LIU ; Xi CHENG ; Chuansheng ZHAO ; Xiaoqian ZHANG ; Chang LIU ; Shanshan ZHONG ; Zhouyang LIU ; Xinyu LIN ; Wei QIU ; Xiuchun ZHANG
Neuroscience Bulletin 2024;40(1):65-78
Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.
Humans
;
Ischemic Stroke
;
Brain/metabolism*
;
Macrophages
;
Brain Ischemia/metabolism*
;
Microglia/metabolism*
;
Gene Expression Profiling
;
Anti-Inflammatory Agents
;
Neuronal Plasticity/physiology*
;
Infarction/metabolism*
4.GAO Weibin's experience in treatment of cerebral infarction in the recovery period with "brain electric field" therapy.
Kexing NING ; Shaopeng LIU ; Lijun LIN ; Yang CUI ; Xuefeng JIAO ; Fei HUANG ; Zhongren SUN ; Hongna YIN
Chinese Acupuncture & Moxibustion 2024;44(11):1299-1303
The "brain electric field" therapy is a novel electroacupuncture method created by Professor GAO Weibin to treat cerebral infarction in the recovery period. This therapy is suitable for the treatment of motor disorders, sensory disorders, cognitive disorders, hemianopsia and bulbar paralysis during the recovery period of cerebral infarction. Based on the different symptoms, the corresponding brain functional areas are selected, supplemented with Taiyang 2, Tunyan 2, Tiyan, Gongxue and Xiatianzhu. These points are attached to electric acupuncture apparatus, and stimulated with dense wave, at frequency of 50 Hz and tolerable intensity. This therapy presents a remarkable effect on cerebral infarction in the recovery period, providing the new approach to the treatment of this disease.
Humans
;
Cerebral Infarction/therapy*
;
Electroacupuncture
;
Acupuncture Points
;
Brain/physiopathology*
;
Male
;
Middle Aged
;
Female
5.Effect of acupuncture on HIF-1α/NLRP3 inflammatory signaling pathway in the rats with cerebral ischemia-reperfusion injury.
Zheng-Yun CAI ; Xin-Chang ZHANG ; Fu-Rong LIU ; Zheng HUANG ; Meng-Ning YANG ; Pei-Yan HUANG ; Zhi-Hui ZHANG ; Guang-Xia NI
Chinese Acupuncture & Moxibustion 2023;43(9):1056-1061
OBJECTIVE:
To observe the effects of Xingnao Kaiqiao (regaining consciousness and opening orifices) acupuncture therapy on the expression of hypoxia-inducible factor 1α (HIF-1α) and Nod-like receptor protein 3 (NLRP3) in cerebral ischemia-reperfusion rats, and to explore the mechanism of acupuncture against cerebral ischemia-reperfusion injury.
METHODS:
Seventy-two male SD rats were randomly divided into a sham-operation group, a model group, an acupuncture group and a non-point acupuncture group, with 18 rats in each one. Using modified Longa thread embolization method, the rat model of acute focal cerebral ischemia was prepared; and after 2 h ischemia, the reperfusion was performed to prepared the model of cerebral ischemia-reperfusion. Immediately after reperfusion, Xingnao Kaiqiao acupuncture method was applied to bilateral "Neiguan" (PC 6) and "Shuigou" (GV 26) in the acupuncture group, while in the non-point acupuncture group, acupuncture was delivered at non-points and all of the needles were retained for 30 min in these two groups. The samples were collected 24 h after reperfusion in the rats of each group. Zea-Longa neurological deficit score was used to evaluate the degree of cerebral neurological impairment, TTC staining was adopted to observe the volume percentage of cerebral infarction, HE staining was provided to observe the morphological changes of brain, and Western blot was applied for detecting the expression of HIF-1α and NLRP3 proteins in the cerebral cortex on the right side.
RESULTS:
Compared with the sham-operation group, neurological deficit score and volume percentage of cerebral infarction were increased in the model group (P<0.01), and HIF-1α and NLRP3 protein expression was elevated (P<0.01). Compared with the model group, neurological deficit score and volume percentage of cerebral infarction were decreased (P<0.01), and HIF-1α and NLRP3 protein expression was lower (P<0.01) in the acupuncture group. There was no significant difference in above indexes in the non-point acupuncture group compared with the model group (P>0.05). Compared with the sham-operation group, the brain tissue of the rats in the model group and the non-point acupuncture group was loose and edema, and the nuclei were shriveled. The brain tissue morphology in the acupuncture group was similar to that of the sham-operation group.
CONCLUSION
Acupuncture can alleviate cerebral ischemia-reperfusion injury, and its mechanism may be related to the regulation of HIF-1α/NLRP3 signaling pathway to attenuate inflammatory response.
Male
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acupuncture Therapy
;
Reperfusion Injury/therapy*
;
Brain Ischemia/therapy*
;
Cerebral Infarction/therapy*
;
NLR Proteins
6.Definition, prediction, prevention and management of patients with severe ischemic stroke and large infarction.
Xing HUA ; Ming LIU ; Simiao WU
Chinese Medical Journal 2023;136(24):2912-2922
Severe ischemic stroke carries a high rate of disability and death. The severity of stroke is often assessed by the degree of neurological deficits or the extent of brain infarct, defined as severe stroke and large infarction, respectively. Critically severe stroke is a life-threatening condition that requires neurocritical care or neurosurgical intervention, which includes stroke with malignant brain edema, a leading cause of death during the acute phase, and stroke with severe complications of other vital systems. Early prediction of high-risk patients with critically severe stroke would inform early prevention and treatment to interrupt the malignant course to fatal status. Selected patients with severe stroke could benefit from intravenous thrombolysis and endovascular treatment in improving functional outcome. There is insufficient evidence to inform dual antiplatelet therapy and the timing of anticoagulation initiation after severe stroke. Decompressive hemicraniectomy (DHC) <48 h improves survival in patients aged <60 years with large hemispheric infarction. Studies are ongoing to provide evidence to inform more precise prediction of malignant brain edema, optimal indications for acute reperfusion therapies and neurosurgery, and the individualized management of complications and secondary prevention. We present an evidence-based review for severe ischemic stroke, with the aims of proposing operational definitions, emphasizing the importance of early prediction and prevention of the evolution to critically severe status, summarizing specialized treatment for severe stroke, and proposing directions for future research.
Humans
;
Ischemic Stroke/pathology*
;
Brain Edema/surgery*
;
Stroke/prevention & control*
;
Brain/pathology*
;
Brain Infarction/pathology*
;
Treatment Outcome
7.Protective effects of three kinds of borneol on different brain regions in acute cerebral ischemia/reperfusion model rats.
Dan-Ni LU ; Qian XIE ; Zhuo XU ; Jian-Mei YUAN ; Rong MA ; Jian WANG
China Journal of Chinese Materia Medica 2023;48(5):1289-1299
This study compared the ameliorating effects of L-borneol, natural borneol, and synthetic borneol on the injury of different brain regions in the rat model of acute phase of cerebral ischemia/reperfusion(I/R) for the first time, which provides a reference for guiding the rational application of borneol in the early treatment of ischemic stroke and has important academic and application values. Healthy specific pathogen-free(SPF)-grade SD male rats were randomly assigned into 13 groups: a sham-operation group, a model group, a Tween model group, a positive drug(nimodipine) group, and high-, medium-, and low-dose(0.2, 0.1, and 0.05 g·kg~(-1), respectively) groups of L-borneol, natural borneol, and synthetic borneol according to body weight. After 3 days of pre-administration, the rat model of I/R was established by suture-occluded method and confirmed by laser speckle imaging. The corresponding agents in different groups were then administered for 1 day. The body temperature was monitored regularly before pre-administration, days 1, 2, and 3 of pre-administration, 2 h after model awakening, and 1 d after model establishment. Neurological function was evaluated based on Zea-Longa score and modified neurological severity score(mNSS) 2 h and next day after awakening. The rats were anesthetized 30 min after the last administration, and blood was collected from the abdominal aorta. Enzyme-linked immunoassay assay(ELISA) was employed to determine the serum levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-4, and transforming growth factor-beta1(TGF-β1). The brain tissues were stained with triphenyltetrazolium chloride(TTC) for the calculation of cerebral infarction rate, and hematoxylin-eosin(HE) staining was used for observing and semi-quantitatively evaluating the pathological damage in different brain regions. Immunohistochemistry was employed to detect the expression of ionized calcium binding adapter molecule 1(IBA1) in microglia. q-PCR was carried out to determine the mRNA levels of iNOS and arginase 1(Arg1), markers of polarization phenotype M1 and M2 in microglia. Compared with the sham-operation group, the model group and the Tween model group showed significantly elevated body temperature, Zea-Longa score, mNSS, and cerebral infarction rate, severely damaged cortex, hippocampus, and striatum, increased serum levels of IL-6 and TNF-α, and decreased serum levels of IL-4 and TGF-β1. The three borneol products had a tendency to reduce the body temperature of rats 1 day after modeling. Synthetic borneol at the doses of 0.2 and 0.05 g·kg~(-1), as well as L-borneol of 0.1 g·kg~(-1), significantly reduced Zea-Longa score and mNSS. The three borneol products at the dose of 0.2 g·kg~(-1) significantly reduced the cerebral infarction rate. L-borneol at the doses of 0.2 and 0.1 g·kg~(-1) and natural borneol at the dose of 0.1 g·kg~(-1) significantly reduced the pathological damage of the cortex. L-borneol and natural borneol at the dose of 0.1 g·kg~(-1) attenuated the pathological damage of hippocampus, and 0.2 g·kg~(-1) L-borneol attenuated the damage of striatum. The 0.2 g·kg~(-1) L-borneol and the three doses of natural borneol and synthetic borneol significantly reduced the serum level of TNF-α, and the 0.1 g·kg~(-1) synthetic borneol reduced the level of IL-6. L-borneol and synthetic borneol at the dose of 0.2 g·kg~(-1) significantly inhibited the activation of cortical microglia, and 0.2 g·kg~(-1) L-borneol up-regulated the expression of Arg1 and down-regulated the expression level of iNOS. In conclusion, the three borneol products may alleviate inflammation to ameliorate the pathological damage of brain regions of rats in the acute phase of I/R by inhibiting the activation of microglia and promoting the polarization of microglia from M1 type to M2 type. The protective effect on brain followed a trend of L-borneol > synthetic borneol > natural borneol. We suggest L-borneol the first choice for the treatment of I/R in the acute phase.
Rats
;
Male
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Interleukin-4/metabolism*
;
Polysorbates
;
Brain
;
Brain Ischemia/metabolism*
;
Reperfusion Injury/metabolism*
;
Cerebral Infarction
;
Reperfusion
8.CiteSpace knowledge map analysis of Angong Niuhuang Pills in recent twenty years.
Xue BAI ; Fei-Fei GUO ; Lin TONG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2023;48(5):1381-1392
Angong Niuhuang Pills, a classical formula in traditional Chinese medicine, are lauded as one of the "three treasures of febrile diseases" and have been widely used in the treatment of diverse disorders with definite efficacy. However, there is still a lack of bibliometric analysis of research progress and development trend regarding Angong Niuhuang Pills. Research articles on Angong Niuhuang Pills in China and abroad(2000-2022) were retrieved from CNKI and Web of Science. CiteSpace 6.1 was used to visualize the key contents of the research articles. In addition, the research status of Angong Niuhuang Pills was analyzed by information extraction to allow insight into the research trends and hotspots about Angong Niuhuang Pills. A total of 460 Chinese articles and 41 English articles were included. Beijing University of Chinese Medicine and Sun Yat-Sen University were the research institutions that have published the largest amount of research articles in Chinese and English. The keyword analysis showed that the Chinese articles focused on cerebral hemorrhage, stroke, neurological function, coma, cerebral infarction, craniocerebral injury, and clinical application, while the English articles focused on the mechanisms of cerebral ischemia, stroke, heavy metal, blood-brain barrier, and oxidative stress. Stroke, blood-brain barrier, and oxidative stress were presumably the research hotspots in the future. At present, the research on Angong Niuhuang Pills is still in the developing stage. It is necessary to highlight the in-depth research on the active components and mechanism of action and carry out large-scale randomized controlled clinical trials to provide references for the further development and application of Angong Niuhuang Pills.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Stroke/drug therapy*
;
Medicine, Chinese Traditional
;
Brain Ischemia/drug therapy*
;
Cerebral Infarction/drug therapy*
9.Bombyx Batryticatus extract promotes microglia polarization to improve neuron injury and behaviors of cerebral ischemia/reperfusion rats.
Pei-Mei HOU ; Hao XU ; Ze-Kang LI ; Hao ZHOU ; Shan-Shan WANG ; Jin-Wen GE
China Journal of Chinese Materia Medica 2023;48(6):1589-1596
This study aims to investigate the effect of Bombyx Batryticatus extract(BBE) on behaviors of rats with global cerebral ischemia reperfusion(I/R) and the underlying mechanism. The automatic coagulometer was used to detect the four indices of human plasma coagulation after BBE intervention for quality control of the extract. Sixty 4-week-old male SD rats were randomized into sham operation group(equivalent volume of normal saline, ip), model group(equivalent volume of normal saline, ip), positive drug group(900 IU·kg~(-1) heparin, ip), and low-, medium-, and high-dose BBE groups(0.45, 0.9, and 1.8 mg·g~(-1)·d~(-1) BBE, ip). Except the sham operation group, rats were subjected to bilateral common carotid artery occlusion followed by reperfusion(BCCAO/R) to induce I/R. The administration lasted 7 days for all the groups. The behaviors of rats were examined by beam balance test(BBT). Morphological changes of brain tissue were observed based on hematoxylin-eosin(HE) staining. Immunofluorescence method was used to detect common leukocyte antigen(CD45), leukocyte differentiation antigen(CD11b), and arginase-1(Arg-1) in cerebral cortex(CC). The protein expression of interleukin-1β(IL-1β), interleukin-4(IL-4), interleukin-6(IL-6), and interleukin-10(IL-10) was detected by enzyme-linked immunosorbent assay(ELISA). The non-targeted metabonomics was employed to detect the levels of metabolites in plasma and CC of rats after BBE intervention. The results of quality control showed that the BBE prolonged the activated partial thromboplastin time(APTT), prothrombin time(PT), and thrombin time(TT) of human plasma, which was similar to the anticoagulation effect of BBE obtained previously. The results of behavioral test showed that the BBT score of the model group increased compared with that of the sham operation group. Compared with the model group, BBE reduced the BBT score. As for the histomorphological examination, compared with the sham operation group, the model group showed morphological changes of a lot of nerve cells in CC. The nerve cells with abnormal morphology in CC decreased after the intervention of BBE compared with those in the model group. Compared with the sham operation group, the model group had high average fluorescence intensity of CD45 and CD11b in the CC. The average fluorescence intensity of CD11b decreased and the average fluorescence intensity of Arg-1 increased in CC in the low-dose BBE group compared with those in the model group. The average fluorescence intensity of CD45 and CD11b decreased and the average fluorescence intensity of Arg-1 increased in medium-and high-dose BBE groups compared with those in the model group. The expression of IL-1β and IL-6 was higher and the expression of IL-4 and IL-10 was lower in the model group than in the sham operation group. The expression of IL-1β and IL-6 was lower and the expression of IL-4 and IL-10 was higher in the low-dose, medium-dose, and high-dose BBE groups than in the model group. The results of non-targeted metabonomics showed that 809 metabolites of BBE were identified, and 57 new metabolites in rat plasma and 45 new metabolites in rat CC were found. BBE with anticoagulant effect can improve the behaviors of I/R rats, and the mechanism is that it promotes the polarization of microglia to M2 type, enhances its anti-inflammatory and phagocytic functions, and thus alleviates the damage of nerve cells in CC.
Humans
;
Rats
;
Male
;
Animals
;
Interleukin-10
;
Rats, Sprague-Dawley
;
Interleukin-4/metabolism*
;
Bombyx
;
Interleukin-6/metabolism*
;
Microglia/metabolism*
;
Saline Solution/metabolism*
;
Reperfusion Injury/metabolism*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion
;
Neurons
10.Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats.
Jin-Feng SHANG ; Jia-Kang JIAO ; Qian-Nan LI ; Ying-Hui LU ; Jing-Yi WANG ; Ming-Xue YAN ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Xiao-Lu ZHANG ; Xin LIU
China Journal of Chinese Materia Medica 2023;48(6):1597-1605
The purpose of this study is to investigate whether chrysin reduces cerebral ischemia-reperfusion injury(CIRI) by inhi-biting ferroptosis in rats. Male SD rats were randomly divided into a sham group, a model group, high-, medium-, and low-dose chrysin groups(200, 100, and 50 mg·kg~(-1)), and a positive drug group(Ginaton, 21.6 mg·kg~(-1)). The CIRI model was induced in rats by transient middle cerebral artery occlusion(tMCAO). The indexes were evaluated and the samples were taken 24 h after the operation. The neurological deficit score was used to detect neurological function. The 2,3,5-triphenyl tetrazolium chloride(TTC) staining was used to detect the cerebral infarction area. Hematoxylin-eosin(HE) staining and Nissl staining were used to observe the morphological structure of brain tissues. Prussian blue staining was used to observe the iron accumulation in the brain. Total iron, lipid pero-xide, and malondialdehyde in serum and brain tissues were detected by biochemical reagents. Real-time quantitative polymerase chain reaction(RT-qPCR), immunohistochemistry, and Western blot were used to detect mRNA and protein expression of solute carrier fa-mily 7 member 11(SLC7A11), transferrin receptor 1(TFR1), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long chain family member 4(ACSL4), and prostaglandin-endoperoxide synthase 2(PTGS2) in brain tissues. Compared with the model group, the groups with drug intervention showed restored neurological function, decreased cerebral infarction rate, and alleviated pathological changes. The low-dose chrysin group was selected as the optimal dosing group. Compared with the model group, the chrysin groups showed reduced content of total iron, lipid peroxide, and malondialdehyde in brain tissues and serum, increased mRNA and protein expression levels of SLC7A11 and GPX4, and decreased mRNA and protein expression levels of TFR1, PTGS2, and ACSL4. Chrysin may regulate iron metabolism via regulating the related targets of ferroptosis and inhibit neuronal ferroptosis induced by CIRI.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Ferroptosis
;
Signal Transduction
;
Brain Ischemia/metabolism*
;
Cyclooxygenase 2/metabolism*
;
RNA, Messenger
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Malondialdehyde
;
Infarction, Middle Cerebral Artery

Result Analysis
Print
Save
E-mail