1.Effects of Zhuang medicine Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke model rats via the P2X7R/NLRP3 pathway.
Liangji GUO ; Ligui GAN ; Zujie QIN ; Hongli TENG ; Chenglong WANG ; Jiangcun WEI ; Xiaoping MEI
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):985-991
Objective To explore the effects of Shuanglu Tongnao Formula on neuroinflammation in ischemic stroke (IS) rats via the P2X purinoceptor 7 receptor (P2X7R)/NLR family pyrin domain-containing 3 (NLRP3) pathway. Methods The rats were divided into five groups: the IS group, control group, Shuanglu Tongnao Formula group, P2X7R inhibitor brilliant blue G (BBG) group, and Shuanglu Tongnao Formula combined with P2X7R activator adenosine triphosphate (ATP) group, with 18 rats in each group. Except for the control group, rats in all other groups were used to construct an IS model using the suture method. After successful modeling, the drug was given once a day for 2 weeks. Neurological function scores and cerebral infarction volume ratios were measured in rats. Pathological examination of the ischemic penumbra brain tissue was performed. Immunofluorescence staining was used to quantify the proportions of microglia co-expressing both inducible nitric oxide synthase (iNOS) and ionized calcium-binding adapter molecule 1 (Iba1), as well as arginase 1 (Arg1) and Iba1, in the ischemic penumbra brain tissue. ELISA was used to detect tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta (TGF-β), interleukin 6 (IL-6) and IL-10 in the ischemic penumbra brain tissue. Western blotting was used to measure P2X7R, NLRP3, and IL-1β proteins in the ischemic penumbra brain tissue. Results Compared with the control group, the IS group showed disordered neuronal arrangement, nuclear condensation, and obvious infiltration of inflammatory cells in the ischemic penumbra; significantly elevated neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with reduced proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. Compared with the IS group, the Zhuang medicine Shuanglu Tongnao Formula and BBG groups demonstrated alleviated brain tissue damage; reduced neurological function scores, cerebral infarction volume ratios, proportions of microglia co-expressing iNOS and Iba1, and levels of TNF-α, IL-6, and P2X7R, NLRP3, IL-1β proteins; along with increased proportions of microglia co-expressing Arg1 and Iba1 and levels of TGF-β and IL-10. ATP reversed the effects of Zhuang medicine Shuanglu Tongnao Formula on microglial polarization and neuroinflammation in IS rats. Conclusion Zhuang medicine Shuanglu Tongnao Formula may promote the transformation of microglia from M1 type to M2 type by inhibiting the P2X7R/NLRP3 pathway, thereby improving neuroinflammation in IS rats.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Receptors, Purinergic P2X7/metabolism*
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Rats
;
Ischemic Stroke/pathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Interleukin-10/metabolism*
;
Brain Ischemia/drug therapy*
;
Microglia/metabolism*
2.Progress on ultrasound-responsive piezoelectric drug delivery system for treatment of neurodegenerative diseases.
Journal of Zhejiang University. Medical sciences 2025;54(4):522-528
Ultrasound has emerged as a non-invasive neural modulation technique. Its mechanisms of action in the brain involve mechanical, cavitation, and thermal effects, which modulate neural activity by activating mechanosensitive ion channels, enhancing cell permeability, and improving blood circulation. The ultrasound-piezo-electric systems, based on the coupling between ultrasound and piezoelectric materials, can generate wireless electrical stimulation to promote neural repair, significantly improving therapeutic outcomes for neurodegenerative diseases and showing potential as a replacement for traditional invasive deep brain stimulation techniques. The ultrasound-responsive piezoelectric drug delivery system combines mechano-electrical conversion capability of piezoelectric materials with the non-invasive penetration advantage of ultrasound. This system achieves synergistic therapeutic effects for neurodegenerative diseases through on-demand drug release and wireless electrical stimulation in deep brain regions. It can effectively overcome the blood-brain barrier limitation, enabling precisely targeted drug delivery to specific brain regions. Simultaneously, it generates electrical stimulation in deep brain areas to exert synergistic neuroreparative effects. Together, these capabilities provide a more precise, efficient, and safe solution for treating neurodegenerative diseases. This review summarizes the neural regulatory mechanisms, technical advantages, and research progress of the ultrasound-responsive piezoelectric drug delivery systems for neurodegenerative disease therapy, aiming to offer novel insights for the field.
Humans
;
Neurodegenerative Diseases/drug therapy*
;
Drug Delivery Systems/methods*
;
Blood-Brain Barrier
;
Ultrasonic Waves
;
Brain
;
Ultrasonic Therapy
;
Deep Brain Stimulation/methods*
3.Shionone protects cerebral ischemic injury through alleviating microglia-mediated neuroinflammation.
Lushan XU ; Chenggang LI ; ChenChen ZHAO ; Zibu WANG ; Zhi ZHANG ; Xin SHU ; Xiang CAO ; Shengnan XIA ; Xinyu BAO ; Pengfei SHAO ; Yun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):471-479
Microglia, the resident immune cells in the central nervous system (CNS), rapidly transition from a resting to an active state in the acute phase of ischemic brain injury. This active state mediates a pro-inflammatory response that can exacerbate the injury. Targeting the pro-inflammatory response of microglia in the semi-dark band during this acute phase may effectively reduce brain injury. Shionone (SH), an active ingredient extracted from the dried roots and rhizomes of the genus Aster (Asteraceae), has been reported to regulate the inflammatory response of macrophages in sepsis-induced acute lung injury. However, its function in post-stroke neuroinflammation, particularly microglia-mediated neuroinflammation, remains uninvestigated. This study found that SH significantly inhibited lipopolysaccharide (LPS)-induced elevation of inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS), in microglia in vitro. Furthermore, the results demonstrated that SH alleviated infarct volume and improved behavioral performance in middle cerebral artery occlusion (MCAO) mice, which may be attributed to the inhibition of the microglial inflammatory response induced by SH treatment. Mechanistically, SH potently inhibited the phosphorylation of serine-threonine protein kinase B (AKT), mammalian target of rapamycin (mTOR), and signal transducer and activator of transcription 3 (STAT3). These findings suggest that SH may be a potential therapeutic agent for relieving ischemic stroke (IS) by alleviating microglia-associated neuroinflammation.
Animals
;
Microglia/immunology*
;
Mice
;
Male
;
Mice, Inbred C57BL
;
Brain Ischemia/immunology*
;
Neuroinflammatory Diseases/drug therapy*
;
Neuroprotective Agents/administration & dosage*
;
Interleukin-1beta/genetics*
;
STAT3 Transcription Factor/genetics*
;
TOR Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Nitric Oxide Synthase Type II/genetics*
;
Lipopolysaccharides
4.Effect of aqueous extract of Corni Fructus on Aβ_(25-35)-induced brain injury and neuroinflammation in mice with Alzheimer's disease.
Feng-Xiao HAO ; Meng-Nan ZENG ; Bing CAO ; Xi-Wen LIANG ; Xin-Mian JIAO ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(15):4015-4026
The purpose of this study was to investigate the effect of aqueous extract of Corni Fructus on β-amyloid protein 25-35(Aβ_(25-35))-induced brain injury and neuroinflammation in Alzheimer's disease(AD) mice to provide an experimental basis for the treatment of AD by aqueous extract of Corni Fructus. Sixty C57BL/6J male mice were randomly divided into a sham group, a model group, a positive control group(huperizine A, 0.2 mg·kg~(-1)), a low-dose aqueous extract of Corni Fructus group(1.3 g·kg~(-1)), a medium-dose aqueous extract of Corni Fructus group(2.6 g·kg~(-1)), and a high-dose aqueous extract of Corni Fructus group(5.2 g·kg~(-1)). The AD model was induced by lateral ventricular injection of Aβ_(25-35) in mice except for those in the sham group, and AD model mice were treated with corresponding drugs by gavage for 24 days. The behavioral test was performed one week before animal dissection. Hematoxylin-eosin(HE) staining was performed to observe the morphology of neurons in the hippocampal region. Flow cytometry was used to detect the apoptosis level of primary hippocampal cells in mice. ELISA kits were used to detect the levels of β-amyloid protein 1-42(Aβ_(1-42)) and phosphorylated microtubule-associated protein Tau(p-Tau) in mouse brain tissues. Immunofluorescence and Western blot were used to detect the expression of related proteins in mouse brain tissues. MTT assay was used to detect the effect of compounds in aqueous extract of Corni Fructus on Aβ_(25-35)-induced N9 cell injury. Molecular docking was employed to analyze the interactions of caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol with β-amyloid precursor protein(APP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). Aqueous extract of Corni Fructus could improve the learning and memory abilities of Aβ_(25-35)-induced mice by increasing the duration of the autonomous activity, the rate of autonomous alternation, the preference coefficient, and the discrimination coefficient, and reduce Aβ_(25-35)-induced brain injury and neuroinflammation in mice by increasing the expression levels of interleukin-10(IL-10) and B-cell lymphoma-2(Bcl-2) in brain tissues, decreasing the expression levels of Aβ_(1-42), p-Tau, IL-6, TNF-α, cysteine aspartate-specific protease 3(caspase-3), cysteine aspartate-specific protease 9(caspase-9), and Bcl-2-associated X protein(Bax), and decreasing the number of activated glial cells in brain tissues. The results of cell experiments showed that esculetin and(+)-lyoniresinol could improve Aβ_(25-35)-induced N9 cell injury. Molecular docking results showed that caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol had good binding affinity with APP and weak binding affinity with IL-6 and TNF-α. Aqueous extract of Corni Fructus could ameliorate cognitive dysfunction and brain damage in Aβ_(25-35)-induced mice by reducing the number of apoptotic cells and activated glial cells in the brain and decreasing the expression level of inflammatory factors. Caffeic acid, trans-p-hydroxy cinnamic acid, isolariciresinol-9'-O-β-D-glucopyranoside, esculetin, and(+)-lyoniresinol may be the material basis for the anti-AD effect of aqueous extract of Corni Fructus.
Mice
;
Male
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Cornus/metabolism*
;
Neuroinflammatory Diseases
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6
;
Aspartic Acid
;
Cysteine/therapeutic use*
;
Molecular Docking Simulation
;
Mice, Inbred C57BL
;
Brain Injuries
;
Peptide Hydrolases
;
Disease Models, Animal
;
Mice, Transgenic
5.Research progress on traditional Chinese medicine in treatment of neurodegenerative diseases by delaying neurovascular unit aging.
Chun-Miao YING ; Fei-Xiang LIU ; Xiao-Long PAN ; Fei-Yan FAN ; Na CHEN ; Yun-Ke ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4060-4071
Neurodegenerative diseases are a collective term for a large group of diseases caused by degenerative changes in nerve cells. Aging is the main risk factor for neurodegenerative diseases. The neurovascular unit(NVU) is the smallest functional unit of the brain, which regulates brain blood flow and maintains brain homeostasis. Accelerated aging of NVU cells directly impairs NVU function and leads to the occurrence of various neurodegenerative diseases. The intrinsic mechanisms of NVU cell aging are complex and involve oxidative stress damage, loss of protein homeostasis, DNA damage, mitochondrial dysfunction, immune inflammatory response, and impaired cellular autophagy. In recent years, studies have found that traditional Chinese medicine(TCM) can inhibit NVU aging through multiple pathways and targets, exerting a brain-protective effect. Therefore, this article aimed to provide a theoretical basis for further research on TCM inhibition of NVU cell aging and references for new drug development and clinical applications by reviewing its mechanisms of anti-aging, such as regulating relevant proteins, improving mitochondrial dysfunction, reducing DNA damage, lowering inflammatory response, antioxidant stress, and modulating cellular autophagy.
Humans
;
Medicine, Chinese Traditional
;
Neurodegenerative Diseases/drug therapy*
;
Brain
;
Aging
;
Neurons
;
Blood-Brain Barrier
6.Neuroprotective effect and mechanism of Zuogui Jiangtang Jieyu Formula on diabetes mellitus complicated with depression model rats based on CX3CL1-CX3CR1 axis.
Ping LI ; Yang LIU ; Man-Shu ZOU ; Ting-Ting WANG ; Hai-Peng GUO ; Ting-Ting REN ; Ying HE ; Hua WANG ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2023;48(21):5822-5829
Based on the CX3C chemokine ligand 1(CX3CL1)-CX3C chemokine receptor 1(CX3CR1) axis, this study explored the potential mechanism by which Zuogui Jiangtang Jieyu Formula(ZGJTJY) improved neuroinflammation and enhanced neuroprotective effect in a rat model of diabetes mellitus complicated with depression(DD). The DD rat model was established by feeding a high-fat diet combined with streptozotocin(STZ) intraperitoneal injection for four weeks and chronic unpredictable mild stress(CUMS) combined with isolated cage rearing for five weeks. The rats were divided into a control group, a model group, a positive control group, an inhibitor group, and a ZGJTJY group. The open field test and forced swimming test were used to assess the depression-like behaviors of the rats. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the expression levels of the pro-inflammatory cytokines interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) in plasma. Immunofluorescence staining was used to detect the expression of ionized calcium-binding adapter molecule 1(Iba1), postsynaptic density protein-95(PSD95), and synapsin-1(SYN1) in the hippocampus. Hematoxylin-eosin(HE) staining, Nissl staining, and TdT-mediated dUTP nick end labeling(TUNEL) fluorescence staining were performed to assess hippocampal neuronal damage. Western blot was used to measure the expression levels of CX3CL1, CX3CR1, A2A adenosine receptor(A2AR), glutamate receptor 2A(NR2A), glutamate receptor 2B(NR2B), and brain-derived neurotrophic factor(BDNF) in the hippocampus. Compared with the model group, the ZGJTJY group showed improved depression-like behaviors in DD rats, enhanced neuroprotective effect, increased expression of PSD95, SYN1, and BDNF(P<0.01), and decreased expression of Iba1, IL-1β, and TNF-α(P<0.01), as well as the expression of CX3CL1, CX3CR1, A2AR, NR2A, and NR2B(P<0.01). These results suggest that ZGJTJY may exert its neuroprotective effect by inhibiting the CX3CL1-CX3CR1 axis and activation of hippocampal microglia, thereby improving neuroinflammation and abnormal activation of N-methyl-D-aspartate receptor(NMDAR) subunits, and ultimately enhancing the expression of synaptic-related proteins PSD95, SYN1, and BDNF in the hippocampus.
Rats
;
Animals
;
Depression/drug therapy*
;
Brain-Derived Neurotrophic Factor
;
Neuroprotective Agents
;
Tumor Necrosis Factor-alpha/metabolism*
;
Neuroinflammatory Diseases
;
Diabetes Mellitus
;
Receptors, Glutamate
;
CX3C Chemokine Receptor 1/genetics*
7.Research progress on precious Tibetan medicine formula in prevention and treatment of central nervous system diseases.
Xiao-Min LUO ; Yi DING ; Bo-Yu ZHANG ; Cun-Ping WANG ; E ZHANG ; Rui TAN ; Pu-Yang GONG ; Jian GU
China Journal of Chinese Materia Medica 2022;47(8):2028-2037
Precious Tibetan medicine formula is a characteristic type of medicine commonly used in the clinical treatment of central nervous system diseases. Through the summary of modern research on the precious Tibetan medicine formulas such as Ratnasampil, Ershiwuwei Zhenzhu Pills, Ershiwewei Shanhu Pills, and Ruyi Zhenbao Pills, it is found that they have obvious advantages in the treatment of stroke, Alzheimer's disease, epilepsy, angioneurotic headache, and vascular dementia. Modern pharmacological studies have shown that the mechanisms of precious Tibetan medicine formulas in improving central nervous system diseases are that they promote microcirculation of brain tissue, regulate the permeability of the blood-brain barrier, alleviate inflammation, relieve oxidative stress damage, and inhibit nerve cell apoptosis. This review summarizes the clinical and pharmacological studies on precious Tibetan medicine formulas in prevention and treatment of central nervous system diseases, aiming to provide a reference for future in-depth research and innovative discovery of Tibetan medicine against central nervous diseases.
Blood-Brain Barrier
;
Brain
;
Central Nervous System Diseases
;
Humans
;
Medicine, Tibetan Traditional
;
Stroke/drug therapy*
8.AD-16 Protects Against Hypoxic-Ischemic Brain Injury by Inhibiting Neuroinflammation.
Zhihua HUANG ; Zhengwei LUO ; Andrea OVCJAK ; Jiangfan WAN ; Nai-Hong CHEN ; Wenhui HU ; Hong-Shuo SUN ; Zhong-Ping FENG
Neuroscience Bulletin 2022;38(8):857-870
Neuroinflammation is a key contributor to the pathogenic cascades induced by hypoxic-ischemic (HI) insult in the neonatal brain. AD-16 is a novel anti-inflammatory compound, recently found to exert potent inhibition of the lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators. In this study, we evaluated the effect of AD-16 on primary astrocytes and neurons under oxygen-glucose deprivation (OGD) in vitro and in mice with neonatal HI brain injury in vivo. We demonstrated that AD-16 protected against OGD-induced astrocytic and neuronal cell injury. Single dose post-treatment with AD-16 (1 mg/kg) improved the neurobehavioral outcome and reduced the infarct volume with a therapeutic window of up to 6 h. Chronic administration reduced the mortality rate and preserved whole-brain morphology following neonatal HI. The in vitro and in vivo effects suggest that AD-16 offers promising therapeutic efficacy in attenuating the progression of HI brain injury and protecting against the associated mortality and morbidity.
Animals
;
Animals, Newborn
;
Astrocytes/pathology*
;
Brain/pathology*
;
Brain Injuries/pathology*
;
Glucose
;
Hypoxia
;
Hypoxia-Ischemia, Brain/drug therapy*
;
Mice
;
Neuroinflammatory Diseases
;
Neuroprotective Agents/therapeutic use*
;
Oxygen/therapeutic use*
9.Clinical characteristics and prognosis of seizures in 75 children with acute lymphoblastic leukemia.
Jing LIU ; Ai Dong LU ; Ying Xi ZUO ; Jun WU ; Zhi Zhuo HUANG ; Yue Ping JIA ; Ming Ming DING ; Le Ping ZHANG ; Jiong QIN
Journal of Peking University(Health Sciences) 2022;54(5):948-953
OBJECTIVE:
To investigate the clinical characteristics, treatment, and prognosis of seizures in children with acute lymphoblastic leukemia (ALL) during chemotherapy.
METHODS:
Children with ALL with seizures during chemotherapy admitted to the Department of Pediatrics, Peking University People's Hospital from January 2010 to March 2022 were retrospectively analyzed. Clinical data including the incidence of seizure, time at seizure onset, causes, management, and prognosis were collected retrospectively.
RESULTS:
A total of 932 children with ALL were admitted during the study period, of whom, 75 (8%) were complicated with seizures during the period of chemotherapy. There were 40 males and 35 females, with a median age of 7.5 (1-17) years, and 43 cases (57.3%) occurred within the first 2 months of chemotherapy. The underlying diseases were reversible posterior encephalopathy syndrome (n=15), cerebral hemorrhage (n=10, one of whom was complicated with venous sinus thrombosis), intrathecal or systemic methotrexate administration (n=11), brain abscess (n=7, fungal infection in 3 cases, and bacterial in 4), viral encephalitis (n=2), febrile seizure (n=7), hyponatremia (n=7), hypocalcemia (n=2), and unknown cause (n=14). Sixty-four children underwent neuroimaging examination after seizure occurrence, of whom 37 (57.8%) were abnormal. The electroencephalograhpy (EEG) was performed in 44 cases and was abnormal in 24 (54.4%). Fifty-five patients remained in long-term remission with regular chemotherapy, 8 patients received hematopoietic stem cell transplantation, 9 died and 3 lost to follow-up. Symptomatic epilepsy was diagnosed in 18 cases (24%), and was well controlled in 16 with over 1 year of seizure-free. Whereas 2 cases were refractory to anti-seizure medications.
CONCLUSION
Seizures are relatively common in children with ALL, most commonly due to reversible posterior encephalopathy syndrome, methotrexate-related neurotoxicity, and cerebral hemorrhage. Seizures occurred within 2 months of chemotherapy in most cases. Neuroimaging and EEG should be performed as soon as possible after the first seizure onset to identify the etiology and to improve the treatment regimen. Some cases developed symptomatic epilepsy, with a satisfactory outcome of seizure remission mostly after concurrent antiseizure medication therapy.
Adolescent
;
Brain Diseases/complications*
;
Cerebral Hemorrhage/complications*
;
Child
;
Electroencephalography
;
Epilepsy/drug therapy*
;
Female
;
Humans
;
Male
;
Methotrexate/adverse effects*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
;
Prognosis
;
Retrospective Studies
10.Study on the difference of curative effect of conventional mercury displacement treatment on mercury in brain and kidney.
Zhen Zhen GAO ; Yu Jie PAN ; Jing MA ; Hui Ling LI ; Xue MEI ; Yu Guo SONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):255-259
Objective: To explore the expulsion effect of sodium dimercaptopropanesulfonate (DMPS) on mercury in different organs of mercury poisoning and the therapeutic effect of glutathione (GSH) combined with antioxidant therapy on mercury poisoning. Methods: In February 2019, 50 SPF male SD rats were randomly divided into 5 groups, 10 rats in each group: A (saline negative control group) , B (HgCL2 positive control group) , treatment group (C: intramuscular injection of DMPS 15 mg/kg treatment, D: intramuscular injection of DMPS30 mg/kg treatment, E: intramuscular injection of DMPS 15 mg/kg and intraperitoneal injection of GSH200 mg/kg treatment) . Rats in group B, C, D and E were subcutaneously injected with mercury chloride solution (1 mg/kg) to establish a rat model of subacute mercury poisoning kidney injury. Rats in group A were subcutaneously injected with normal saline. After the establishment of the model, rats in the treatment group were injected with DMPS and GSH. Rats in group A and group B were injected with normal saline. At 21 d (treatment 7 d) and 28 d (treatment 14 d) after exposure, urine and blood samples of 5 rats in each group were collected. Blood biochemistry, urine mercury, urine microalbumin and mercury content in renal cortex, cerebral cortex and cerebellum were detected. Results: After exposure to mercury, the contents of mercury in renal cortex, cerebrum and cerebellum of rats in group B, C, D and E increased, and urine microalbumin increased. Pathology showed renal tubular injury and renal interstitial inflammation. Compared with group B, urinary mercury and renal cortex mercury in group C, D and E decreased rapidly after DMPS treatment, and there was no significant decrease in mercury levels in cerebellum and cerebral cortex of rats, accompanied by transient increase in urinary albumin after DMPS treatment (P<0.05) ; the renal interstitial inflammation in group E was improved after GSH treatment. There was a positive correlation between urinary mercury and the contents of mercury in renal cortex, cerebral cortex and cerebellum (r=0.61, 0.47, 0.48, P<0.05) . Conclusion: DMPS mercury expulsion treatment can significantly reduce the level of metal mercury in the kidney, and there is no significant change in the level of metal mercury in the cortex and cerebellum.
Animals
;
Brain/drug effects*
;
Glutathione
;
Inflammation
;
Kidney/drug effects*
;
Kidney Diseases/chemically induced*
;
Male
;
Mercuric Chloride/therapeutic use*
;
Mercury/urine*
;
Mercury Poisoning/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution/therapeutic use*
;
Unithiol/therapeutic use*

Result Analysis
Print
Save
E-mail