1.Current applications for magnetic resonance-guided focused ultrasound in the treatment of Parkinson's disease.
Haoxuan LU ; Xiaoyu WANG ; Xin LOU
Chinese Medical Journal 2023;136(7):780-787
Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel and minimally invasive technology. Since the US Food and Drug Administration approved unilateral ventral intermediate nucleus-MRgFUS for medication-refractory essential tremor in 2016, studies on new indications, such as Parkinson's disease (PD), psychiatric diseases, and brain tumors, have been on the rise, and MRgFUS has become a promising method to treat such neurological diseases. Currently, as the second most common degenerative disease, PD is a research hotspot in the field of MRgFUS. The actions of MRgFUS on the brain range from thermoablation, blood-brain barrier (BBB) opening, to neuromodulation. Intensity is a key determinant of ultrasound actions. Generally, high intensity can be used to precisely thermoablate brain targets, whereas low intensity can be used as molecular therapies to modulate neuronal activity and open the BBB in conjunction with injected microbubbles. Here, we aimed to summarize advances in the application of MRgFUS for the treatment of PD, with a focus on thermal ablation, BBB opening, and neuromodulation, in the hope of informing clinicians of current applications.
Humans
;
Parkinson Disease/therapy*
;
Brain
;
Blood-Brain Barrier
;
Essential Tremor/surgery*
;
Brain Neoplasms
;
Magnetic Resonance Imaging/methods*
;
Magnetic Resonance Spectroscopy
2.Predicting survival and prognosis of postoperative breast cancer brain metastasis: a population-based retrospective analysis.
Yan NIE ; Bicheng YING ; Zinan LU ; Tonghui SUN ; Gang SUN
Chinese Medical Journal 2023;136(14):1699-1707
BACKGROUND:
Breast cancer is one of the most common cancer in women and a proportion of patients experiences brain metastases with poor prognosis. The study aimed to construct a novel predictive clinical model to evaluate the overall survival (OS) of patients with postoperative brain metastasis of breast cancer (BCBM) and validate its effectiveness.
METHODS:
From 2010 to 2020, a total of 310 female patients with BCBM were diagnosed in The Affiliated Cancer Hospital of Xinjiang Medical University, and they were randomly assigned to the training cohort and the validation cohort. Data of another 173 BCBM patients were collected from the Surveillance, Epidemiology, and End Results Program (SEER) database as an external validation cohort. In the training cohort, the least absolute shrinkage and selection operator (LASSO) Cox regression model was used to determine the fundamental clinical predictive indicators and the nomogram was constructed to predict OS. The model capability was assessed using receiver operating characteristic, C-index, and calibration curves. Kaplan-Meier survival analysis was performed to evaluate clinical effectiveness of the risk stratification system in the model. The accuracy and prediction capability of the model were verified using the validation and SEER cohorts.
RESULTS:
LASSO Cox regression analysis revealed that lymph node metastasis, molecular subtype, tumor size, chemotherapy, radiotherapy, and lung metastasis were statistically significantly correlated with BCBM. The C-indexes of the survival nomogram in the training, validation, and SEER cohorts were 0.714, 0.710, and 0.670, respectively, which showed good prediction capability. The calibration curves demonstrated that the nomogram had great forecast precision, and a dynamic diagram was drawn to increase the maneuverability of the results. The Risk Stratification System showed that the OS of low-risk patients was considerably better than that of high-risk patients ( P < 0.001).
CONCLUSION
The nomogram prediction model constructed in this study has a good predictive value, which can effectively evaluate the survival rate of patients with postoperative BCBM.
Female
;
Humans
;
Breast Neoplasms/surgery*
;
Retrospective Studies
;
Prognosis
;
Brain Neoplasms/surgery*
;
Nomograms
3.Clinical Effect of Surgical Reconstruction of Extracranial Vertebral Artery.
Gen-Huan YANG ; Peng-Zhi LIAO ; Yan WANG ; Yu-Long JIA
Acta Academiae Medicinae Sinicae 2023;45(2):251-256
Objective To evaluate the effect of surgical reconstruction of extracranial vertebral artery and to summarize the experience. Methods The clinical data of 15 patients undergoing surgical reconstruction of extracranial vertebral artery from September 2018 to June 2022 were collected.The operation methods,operation duration,intraoperative blood loss,operation complications,and relief of symptoms were retrospectively analyzed. Results Eleven patients underwent vertebral artery (V1 segment) to common carotid artery transposition,two patients underwent endarterectomy of V1 segment,two patients underwent V3 segment to external carotid artery bypass or transposition.The operation duration,intraoperative blood loss,and blocking time of common carotid artery varied within 120-340 min,50-300 ml,and 12-25 min,with the medians of 240 min,100 ml,and 16 min,respectively.There was no cardiac accident,cerebral hyperperfusion syndrome,cerebral hemorrhage or lymphatic leakage during the perioperative period.One patient suffered from cerebral infarction and three patients suffered from incomplete Horner's syndrome after the operation.During the follow-up (4-45 months,median of 26 months),there was no anastomotic stenosis,new cerebral infarction or cerebral ischemia. Conclusion Surgical reconstruction of extracranial vertebral artery is safe and effective,and individualized reconstruction strategy should be adopted according to different conditions.
Humans
;
Vertebral Artery/surgery*
;
Blood Loss, Surgical
;
Retrospective Studies
;
Brain Ischemia
;
Cerebral Infarction
4.An expandable chamber for safe brain retraction: new technologies in the field of transcranial endoscopic surgery.
Elena ROCA ; Anna GOBETTI ; Giovanna CORNACCHIA ; Oscar VIVALDI ; Barbara BUFFOLI ; Giorgio RAMORINO
Journal of Zhejiang University. Science. B 2023;24(4):326-335
Neurosurgery is a highly specialized field: it often involves surgical manipulation of noble structures and cerebral retraction is frequently necessary to reach deep-seated brain lesions. There are still no reliable methods preventing possible retraction complications. The objective of this study was to design work chambers well suited for transcranial endoscopic surgery while providing safe retraction of the surrounding brain tissue. The chamber is designed to be inserted close to the intracranial point of interest; once it is best placed it can be opened. This should guarantee an appreciable workspace similar to that of current neurosurgical procedures. The experimental aspect of this study involved the use of a force sensor to evaluate the pressures exerted on the brain tissue during the retraction phase. Following pterional craniotomy, pressure measurements were made during retraction with the use of a conventional metal spatula with different inclinations. Note that, although the force values necessary for retraction and exerted on the spatula by the neurosurgeon are the same, the local pressure exerted on the parenchyma at the edge of the spatula at different inclinations varied greatly. A new method of cerebral retraction using a chamber retractor (CR) has been designed to avoid any type of complication due to spatula edge overpressures and to maintain acceptable pressure values exerted on the parenchyma.
Humans
;
Brain/surgery*
;
Neurosurgical Procedures/methods*
;
Neurosurgery
;
Brain Neoplasms
;
Endoscopy
6.Application of cochlear nerve action potential monitoring in the resection of vestibular schwannomas.
Xiu Ying WANG ; Jun ZHANG ; Jiao CONG ; Qun WANG ; Ding ZHANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):200-205
Objective: To investigate the application of cochlear nerve action potential (CNAP) monitoring in the resection of vestibular schwannoma, especially evaluating its significance for hearing preservation. Methods: From April 2018 to December 2021, 54 patients with vestibular schwannoma who underwent resection via retrosigmoid approach were collected in Chinese PLA General Hospital. Before surgery, all patients had effective hearing (AAO-HNS grade C or above). Brainstem auditory evoked potential (BAEP) combined with CNAP monitoring was performed during surgery. The CNAP monitoring was combined with continuous monitoring and cochlear nerve mapping. And patients were divided into hearing preservation group and non-preserved group according to postoperative AAO-HNS grade. SPSS 23.0 software was used to analyze the differences of CNAP and BEAP parameters between the two groups. Results: A total of 54 patients completed intraoperative monitoring and data collection, including 25 males (46.3%) and 29 females (53.7%), aged 27-71 years with an average age of 46.2 years. The maximum tumor diameter were (18.1±5.9) mm (range 10-34 mm). All tumors were totally removed with preserved facial nerve function (House-Brackmann grade I-II). The hearing preservation rate of 54 patients was 51.9% (28/54). During surgery, the V wave extraction rate of BAEP waveform was 85.2% (46/54) before tumor resection, 71.4% (20/28) in the hearing preservation group after tumor resection, and disappeared in the hearing preservation group (0/26). CNAP waveform was elicited in 54 patients during operation. Differences were found in the distribution of CNAP waveforms after tumor resection. The waveforms of the hearing-preserving group were triphasic and biphasic, while those in the non-preserving group were low-level and positive. For hearing preservation group, the amplitude of N1 wave after tumor resection was significantly higher than that before tumor resection[14.45(7.54, 33.85)μV vs 9.13(4.88, 23.35)μV, P=0.022]; However, for the non-preserved group, the amplitude of N1 wave after tumor resection was significantly lower than that before tumor resection [3.07(1.96, 4.60)μV vs 6.55(4.54, 9.71)μV, P=0.007]; After tumor resection, the amplitude was significantly higher than that of the unreserved group [14.45(7.54, 33.85)μV vs 3.07(1.96, 4.60)μV, P<0.001]. Conclusions: BAEP combined with CNAP monitoring is conducive to intraoperative hearing protection, and the application of cochlear nerve mapping can prompt the surgeon to avoid nerve injury. The waveform and N1 amplitude of CNAP after tumor resection have a certain value in predicting postoperative hearing preservation status.
Female
;
Male
;
Humans
;
Middle Aged
;
Neuroma, Acoustic/surgery*
;
Action Potentials
;
Evoked Potentials, Auditory, Brain Stem
;
Cochlea
;
Cochlear Nerve
8.Definition, prediction, prevention and management of patients with severe ischemic stroke and large infarction.
Xing HUA ; Ming LIU ; Simiao WU
Chinese Medical Journal 2023;136(24):2912-2922
Severe ischemic stroke carries a high rate of disability and death. The severity of stroke is often assessed by the degree of neurological deficits or the extent of brain infarct, defined as severe stroke and large infarction, respectively. Critically severe stroke is a life-threatening condition that requires neurocritical care or neurosurgical intervention, which includes stroke with malignant brain edema, a leading cause of death during the acute phase, and stroke with severe complications of other vital systems. Early prediction of high-risk patients with critically severe stroke would inform early prevention and treatment to interrupt the malignant course to fatal status. Selected patients with severe stroke could benefit from intravenous thrombolysis and endovascular treatment in improving functional outcome. There is insufficient evidence to inform dual antiplatelet therapy and the timing of anticoagulation initiation after severe stroke. Decompressive hemicraniectomy (DHC) <48 h improves survival in patients aged <60 years with large hemispheric infarction. Studies are ongoing to provide evidence to inform more precise prediction of malignant brain edema, optimal indications for acute reperfusion therapies and neurosurgery, and the individualized management of complications and secondary prevention. We present an evidence-based review for severe ischemic stroke, with the aims of proposing operational definitions, emphasizing the importance of early prediction and prevention of the evolution to critically severe status, summarizing specialized treatment for severe stroke, and proposing directions for future research.
Humans
;
Ischemic Stroke/pathology*
;
Brain Edema/surgery*
;
Stroke/prevention & control*
;
Brain/pathology*
;
Brain Infarction/pathology*
;
Treatment Outcome
9.Basal cisternostomy for traumatic brain injury: A case report of unexpected good recovery.
Manuel De Jesus ENCARNACION RAMIREZ ; Rossi Evelyn BARRIENTOS CASTILLO ; Anton VOROBIEV ; Nikita KISELEV ; Amaya Alvarez AQUINO ; Ibrahim E EFE
Chinese Journal of Traumatology 2022;25(5):302-305
In subarachnoid hemorrhage following traumatic brain injury (TBI), the high intracisternal pressure drives the cerebrospinal fluid into the brain parenchyma, causing cerebral edema. Basal cisternostomy involves opening the basal cisterns to atmospheric pressure and draining cerebrospinal fluid in an attempt to reverse the edema. We describe a case of basal cisternostomy combined with decompressive craniectomy. A 35-year-old man with severe TBI following a road vehicle accident presented with acute subdural hematoma, Glasgow coma scale score of 6, fixed pupils and no corneal response. Opening of the basal cisterns and placement of a temporary cisternal drain led to immediate relaxation of the brain. The patient had a Glasgow coma scale score of 15 on postoperative day 6 and was discharged on day 10. We think basal cisternostomy is a feasible and effective procedure that should be considered in the management of TBI.
Adult
;
Brain
;
Brain Edema
;
Brain Injuries, Traumatic/surgery*
;
Decompressive Craniectomy/methods*
;
Glasgow Coma Scale
;
Humans
;
Male
;
Treatment Outcome
10.Reading-related Brain Function Restored to Normal After Articulation Training in Patients with Cleft Lip and Palate: An fMRI Study.
Liwei SUN ; Wenjing ZHANG ; Mengyue WANG ; Songjian WANG ; Zhen LI ; Cui ZHAO ; Meng LIN ; Qian SI ; Xia LI ; Ying LIANG ; Jing WEI ; Xu ZHANG ; Renji CHEN ; Chunlin LI
Neuroscience Bulletin 2022;38(10):1215-1228
Cleft lip and/or palate (CLP) are the most common craniofacial malformations in humans. Speech problems often persist even after cleft repair, such that follow-up articulation training is usually required. However, the neural mechanism behind effective articulation training remains largely unknown. We used fMRI to investigate the differences in brain activation, functional connectivity, and effective connectivity across CLP patients with and without articulation training and matched normal participants. We found that training promoted task-related brain activation among the articulation-related brain networks, as well as the global attributes and nodal efficiency in the functional-connectivity-based graph of the network. Our results reveal the neural correlates of effective articulation training in CLP patients, and this could contribute to the future improvement of the post-repair articulation training program.
Brain/diagnostic imaging*
;
Cleft Lip/surgery*
;
Cleft Palate/surgery*
;
Humans
;
Magnetic Resonance Imaging
;
Reading

Result Analysis
Print
Save
E-mail