1.A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
Yupeng YANG ; Lifeng ZHANG ; Zhenni WANG ; Bo LIANG ; Giovanni BARBERA ; Casey MOFFITT ; Yun LI ; Da-Ting LIN
Neuroscience Bulletin 2019;35(3):419-424
The complex spatial and temporal organization of neural activity in the brain is important for information-processing that guides behavior. Hence, revealing the real-time neural dynamics in freely-moving animals is fundamental to elucidating brain function. Miniature fluorescence microscopes have been developed to fulfil this requirement. With the help of GRadient INdex (GRIN) lenses that relay optical images from deep brain regions to the surface, investigators can visualize neural activity during behavioral tasks in freely-moving animals. However, the application of GRIN lenses to deep brain imaging is severely limited by their availability. Here, we describe a protocol for GRIN lens coating that ensures successful long-term intravital imaging with commercially-available GRIN lenses.
Animals
;
Biocompatible Materials
;
Brain
;
physiology
;
Hippocampus
;
cytology
;
Lenses
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Microscopy, Fluorescence
;
methods
;
Neuroimaging
;
instrumentation
;
methods
;
Neurons
;
physiology
2.G protein-coupled estrogen receptor alleviates cerebral ischemia-reperfusion injury through inhibiting endoplasmic reticulum stress.
Zi-Wei HAN ; Li-Cang ZHU ; Yue-Chen CHANG ; Ying ZHOU ; Jia-An ZONG ; Ke-Tao MA ; Jun-Qiang SI ; Li LI
Acta Physiologica Sinica 2019;71(4):527-536
The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.
Animals
;
Apoptosis
;
Brain Ischemia
;
CA1 Region, Hippocampal
;
cytology
;
Caspase 12
;
metabolism
;
Caspase 3
;
metabolism
;
Endoplasmic Reticulum Stress
;
Female
;
Heat-Shock Proteins
;
metabolism
;
Neurons
;
cytology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Estrogen
;
physiology
;
Receptors, G-Protein-Coupled
;
agonists
;
Reperfusion Injury
;
Transcription Factor CHOP
;
metabolism
3.Research advances in endogenous neural stem cells promoting neural repair after ischemic stroke.
Chang-Yun FANG ; Xu-Sheng WU ; Hang ZHANG ; Yan-Ling GU ; Shi-Bing WANG ; Hui-Wen REN ; Ke CHEN ; Hui ZHANG ; Bao-Hua CHENG ; Yang GAO
Acta Physiologica Sinica 2019;71(3):454-462
Neural stem cell therapy, as a new therapeutic method for neural diseases, has aroused a wide concern for over 20 years since neural stem cells were first found in 1992. Ischemic stroke is highly concerned because of its high incidence, mortality and disability rates. Because the brain has a limited ability to repair itself, to improve neural function and promote neural regeneration may help to prevent occurrence and development of neurological diseases. It is noteworthy that some stroke patients showed an ability to repair brain several months after the stroke happened, suggesting an existence of endogenous nerve repair in these patients. The research advances in functions of endogenous neural stem cells in neural regeneration and the related regulators after ischemic stroke are summarized in this review to provide new views of the mechanism of neural functional recovery after ischemic stroke.
Brain Ischemia
;
therapy
;
Humans
;
Nerve Regeneration
;
Neural Stem Cells
;
cytology
;
Stroke
;
therapy
4.mA Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2.
Junchen CHEN ; Yi-Chang ZHANG ; Chunmin HUANG ; Hui SHEN ; Baofa SUN ; Xuejun CHENG ; Yu-Jie ZHANG ; Yun-Gui YANG ; Qiang SHU ; Ying YANG ; Xuekun LI
Genomics, Proteomics & Bioinformatics 2019;17(2):154-168
N-methyladenosine (mA), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of mA modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced mA levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. mA immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that mA was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, mA was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated mA modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
Adenosine
;
analogs & derivatives
;
metabolism
;
Adult Stem Cells
;
cytology
;
metabolism
;
Animals
;
Brain
;
metabolism
;
Cell Differentiation
;
genetics
;
Cell Proliferation
;
Enhancer of Zeste Homolog 2 Protein
;
metabolism
;
Gene Expression Regulation
;
Methyltransferases
;
metabolism
;
Mice, Inbred C57BL
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurogenesis
;
genetics
;
Neurons
;
cytology
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
5.Hierarchical Control of Drosophila Sleep, Courtship, and Feeding Behaviors by Male-Specific P1 Neurons.
Wenxuan ZHANG ; Chao GUO ; Dandan CHEN ; Qionglin PENG ; Yufeng PAN
Neuroscience Bulletin 2018;34(6):1105-1110
Animals choose among sleep, courtship, and feeding behaviors based on the integration of both external sensory cues and internal states; such choices are essential for survival and reproduction. These competing behaviors are closely related and controlled by distinct neural circuits, but whether they are also regulated by shared neural nodes is unclear. Here, we investigated how a set of male-specific P1 neurons controls sleep, courtship, and feeding behaviors in Drosophila males. We found that mild activation of P1 neurons was sufficient to affect sleep, but not courtship or feeding, while stronger activation of P1 neurons labeled by four out of five independent drivers induced courtship, but only the driver that targeted the largest number of P1 neurons affected feeding. These results reveal a common neural node that affects sleep, courtship, and feeding in a threshold-dependent manner, and provide insights into how competing behaviors can be regulated by a shared neural node.
Animals
;
Animals, Genetically Modified
;
Brain
;
cytology
;
Courtship
;
Drosophila
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
physiology
;
Locomotion
;
Male
;
Neural Inhibition
;
physiology
;
Neural Pathways
;
physiology
;
Neurons
;
physiology
;
Sex Factors
;
Sleep
;
physiology
6.Spatiotemporal Imaging of Cellular Energy Metabolism with Genetically-Encoded Fluorescent Sensors in Brain.
Zhuo ZHANG ; Weicai CHEN ; Yuzheng ZHAO ; Yi YANG
Neuroscience Bulletin 2018;34(5):875-886
The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism underlying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte-neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neuronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here, we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.
Animals
;
Biosensing Techniques
;
Brain
;
cytology
;
metabolism
;
Cytological Techniques
;
Energy Metabolism
;
Humans
;
Luminescent Proteins
;
genetics
;
metabolism
;
Time Factors
7.GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice.
Zhibao GUO ; Yingying SU ; Huifang LOU
Neuroscience Bulletin 2018;34(5):769-778
Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP cells mainly generated NeuN neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP cells at the young adult stage is significantly different from that at the adult stage.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Brain
;
cytology
;
growth & development
;
metabolism
;
Calbindins
;
metabolism
;
Glial Fibrillary Acidic Protein
;
metabolism
;
Mice
;
Mice, Transgenic
;
Nerve Tissue Proteins
;
metabolism
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Nuclear Proteins
;
metabolism
8.Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone.
Yun-Ting SU ; Meng-Yang GU ; Xi CHU ; Xiang FENG ; Yan-Qin YU
Neuroscience Bulletin 2018;34(3):485-496
The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
Animals
;
Axons
;
physiology
;
Brain
;
anatomy & histology
;
Brain Mapping
;
Brain Stem
;
cytology
;
GABAergic Neurons
;
physiology
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neural Pathways
;
physiology
;
Peptide Elongation Factor 1
;
genetics
;
metabolism
;
Rabies virus
;
genetics
;
metabolism
;
Transduction, Genetic
;
Vesicular Inhibitory Amino Acid Transport Proteins
;
genetics
;
metabolism
9.Atlas of the Striatum and Globus Pallidus in the Tree Shrew: Comparison with Rat and Mouse.
Rong-Jun NI ; Zhao-Huan HUANG ; Yu-Mian SHU ; Yu WANG ; Tao LI ; Jiang-Ning ZHOU
Neuroscience Bulletin 2018;34(3):405-418
The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.
Acetylcholinesterase
;
metabolism
;
Animals
;
Brain Mapping
;
Corpus Striatum
;
anatomy & histology
;
cytology
;
metabolism
;
Globus Pallidus
;
anatomy & histology
;
cytology
;
metabolism
;
Imaging, Three-Dimensional
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neurons
;
metabolism
;
Parvalbumins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Statistics, Nonparametric
;
Tupaiidae
;
anatomy & histology
10.Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2018;9(3):298-309
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Blood-Brain Barrier
;
cytology
;
metabolism
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
genetics
;
metabolism
;
Female
;
Glycosylation
;
Male
;
Mice
;
Proteoglycans
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail