2.Partial duplication of tentorium cerebelli and complete duplication of falx cerebelli
Satheesha B NAYAK ; Surekha D SHETTY
Anatomy & Cell Biology 2019;52(3):337-339
Variations of the dural folds and the dural venous sinuses are infrequently reported in the existing medical literature. Such variations in the posterior cranial fossa may pose difficulties in various analytical and surgical procedures of this region. We present a rare concurrent variation of the falx cerebelli and tentorium cerebelli that was detected during routine dissection of an adult male cadaver. While removing the brain, a partial duplication of tentorium cerebelli was observed below the left half of the tentorium cerebelli and above the left cerebellar hemisphere. This fold did not have any dural venous sinus in it. Further, a complete duplication of falx cerebelli with a single occipital venous sinus within its attached border was also observed. We present the review of literature and discuss the comparative anatomy of this case.
Adult
;
Anatomy, Comparative
;
Brain
;
Cadaver
;
Cranial Fossa, Posterior
;
Dura Mater
;
Humans
;
Male
;
Meninges
;
Spinal Cord
3.Advanced Sectioned Images of a Cadaver Head with Voxel Size of 0.04 mm
Beom Sun CHUNG ; Miran HAN ; Donghwan HAR ; Jin Seo PARK
Journal of Korean Medical Science 2019;34(34):e218-
BACKGROUND: The sectioned images of a cadaver head made from the Visible Korean project have been used for research and educational purposes. However, the image resolution is insufficient to observe detailed structures suitable for experts. In this study, advanced sectioned images with higher resolution were produced for the identification of more detailed structures. METHODS: The head of a donated female cadaver was scanned for 3 Tesla magnetic resonance images and diffusion tensor images (DTIs). After the head was frozen, the head was sectioned serially at 0.04-mm intervals and photographed repeatedly using a digital camera. RESULTS: On the resulting 4,000 sectioned images (intervals and pixel size, 0.04 mm³; color depth, 48 bits color; a file size, 288 Mbytes), minute brain structures, which can be observed not on previous sectioned images but on microscopic slides, were observed. The voxel size of this study (0.04 mm³) was very minute compared to our previous study (0.1 mm³; resolution, 4,368 × 2,912) and Visible Human Project of the USA (0.33 mm³; resolution, 2,048 × 2,048). Furthermore, the sectioned images were combined with tractography of the DTIs to elucidate the white matter with high resolution and the actual color of the tissue. CONCLUSION: The sectioned images will be used for diverse research, including the applications for the cross sectional anatomy and three-dimensional models for virtual experiments.
Anatomy, Cross-Sectional
;
Brain
;
Cadaver
;
Diffusion
;
Diffusion Tensor Imaging
;
Female
;
Head
;
Humans
;
White Matter
4.Rise of the Visible Monkey: Sectioned Images of Rhesus Monkey
Beom Sun CHUNG ; Chang Yeop JEON ; Jae Won HUH ; Kang Jin JEONG ; Donghwan HAR ; Kyu Sung KWACK ; Jin Seo PARK
Journal of Korean Medical Science 2019;34(8):e66-
BACKGROUND: Gross anatomy and sectional anatomy of a monkey should be known by students and researchers of veterinary medicine and medical research. However, materials to learn the anatomy of a monkey are scarce. Thus, the objective of this study was to produce a Visible Monkey data set containing cross sectional images, computed tomographs (CTs), and magnetic resonance images (MRIs) of a monkey whole body. METHODS: Before and after sacrifice, a female rhesus monkey was used for 3 Tesla MRI and CT scanning. The monkey was frozen and sectioned at 0.05 mm intervals for the head region and at 0.5 mm intervals for the rest of the body using a cryomacrotome. Each sectioned surface was photographed using a digital camera to obtain horizontal sectioned images. Segmentation of sectioned images was performed to elaborate three-dimensional (3D) models of the skin and brain. RESULTS: A total of 1,612 horizontal sectioned images of the head and 1,355 images of the remaining region were obtained. The small pixel size (0.024 mm × 0.024 mm) and real color (48 bits color) of these images enabled observations of minute structures. CONCLUSION: Due to small intervals of these images, continuous structures could be traced completely. Moreover, 3D models of the skin and brain could be used for virtual dissections. Sectioned images of this study will enhance the understanding of monkey anatomy and foster further studies. These images will be provided to any requesting researcher free of charge.
Anatomy, Cross-Sectional
;
Brain
;
Dataset
;
Female
;
Haplorhini
;
Head
;
Humans
;
Macaca mulatta
;
Magnetic Resonance Imaging
;
Primates
;
Skin
;
Tomography, X-Ray Computed
;
Veterinary Medicine
5.Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone.
Yun-Ting SU ; Meng-Yang GU ; Xi CHU ; Xiang FENG ; Yan-Qin YU
Neuroscience Bulletin 2018;34(3):485-496
The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
Animals
;
Axons
;
physiology
;
Brain
;
anatomy & histology
;
Brain Mapping
;
Brain Stem
;
cytology
;
GABAergic Neurons
;
physiology
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Neural Pathways
;
physiology
;
Peptide Elongation Factor 1
;
genetics
;
metabolism
;
Rabies virus
;
genetics
;
metabolism
;
Transduction, Genetic
;
Vesicular Inhibitory Amino Acid Transport Proteins
;
genetics
;
metabolism
6.Atlas of the Striatum and Globus Pallidus in the Tree Shrew: Comparison with Rat and Mouse.
Rong-Jun NI ; Zhao-Huan HUANG ; Yu-Mian SHU ; Yu WANG ; Tao LI ; Jiang-Ning ZHOU
Neuroscience Bulletin 2018;34(3):405-418
The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.
Acetylcholinesterase
;
metabolism
;
Animals
;
Brain Mapping
;
Corpus Striatum
;
anatomy & histology
;
cytology
;
metabolism
;
Globus Pallidus
;
anatomy & histology
;
cytology
;
metabolism
;
Imaging, Three-Dimensional
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neurons
;
metabolism
;
Parvalbumins
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Statistics, Nonparametric
;
Tupaiidae
;
anatomy & histology
7.Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus.
Jian-Kun DAI ; Shu-Xia WANG ; Dai SHAN ; Hai-Chen NIU ; Hao LEI
Neuroscience Bulletin 2018;34(3):438-448
Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to study white and gray matter (GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging (TDI) is an image reconstruction method for dMRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI (stTDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct direction-encoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging (DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with stTDI, but not with DTI reconstructions from the same dMRI data. The possible mechanisms underlying the enhanced GM contrast are discussed.
Animals
;
Brain Mapping
;
Diffusion Tensor Imaging
;
methods
;
Hippocampus
;
diagnostic imaging
;
Image Processing, Computer-Assisted
;
methods
;
Male
;
Neural Pathways
;
diagnostic imaging
;
Tupaiidae
;
anatomy & histology
;
Visual Cortex
;
diagnostic imaging
8.Giant hypothalamic hamartoma associated with an intracranial cyst in a newborn.
Joo Yeon LEE ; Hye Kyung YOON ; Shin Kwang KHANG
Ultrasonography 2016;35(4):353-358
We report the case of a giant hypothalamic hamartoma with a large intracranial cyst in a neonate. On ultrasonography, the lesion presented as a lobulated, mass-like lesion with similar echogenicity to the adjacent brain parenchyma, located anterior to the underdeveloped and compressed left temporal lobe, and presenting as an intracranial cyst in the left cerebral convexity without definite internal echogenicity or septa. The presence of a hypothalamic hamartoma and intracranial neurenteric cyst were confirmed by surgical biopsy. The association of a giant hypothalamic hamartoma and a neurenteric cyst is rare. Due to the rarity of this association, the large size of the intracranial cyst, and the resulting distortion in the regional anatomy, the diagnosis of the solid mass was not made correctly on prenatal high-resolution ultrasonography.
Anatomy, Regional
;
Biopsy
;
Brain
;
Central Nervous System Cysts
;
Diagnosis
;
Hamartoma*
;
Humans
;
Infant, Newborn*
;
Magnetic Resonance Imaging
;
Neural Tube Defects
;
Temporal Lobe
;
Ultrasonography
9.Functional Magnetic Resonance Imaging of Motor Cortex Activation in Schizophrenia.
Hyo Jong LEE ; Adrian PREDA ; Judith M FORD ; Daniel H MATHALON ; David B KEATOR ; Theo G M VAN ERP ; Jessica A TURNER ; Steven G POTKIN
Journal of Korean Medical Science 2015;30(5):625-631
Previous fMRI studies of sensorimotor activation in schizophrenia have found in some cases hypoactivity, no difference, or hyperactivity when comparing patients with controls; similar disagreement exists in studies of motor laterality. In this multi-site fMRI study of a sensorimotor task in individuals with chronic schizophrenia and matched healthy controls, subjects responded with a right-handed finger press to an irregularly flashing visual checker board. The analysis includes eighty-five subjects with schizophrenia diagnosed according to the DSM-IV criteria and eighty-six healthy volunteer subjects. Voxel-wise statistical parametric maps were generated for each subject and analyzed for group differences; the percent Blood Oxygenation Level Dependent (BOLD) signal changes were also calculated over predefined anatomical regions of the primary sensory, motor, and visual cortex. Both healthy controls and subjects with schizophrenia showed strongly lateralized activation in the precentral gyrus, inferior frontal gyrus, and inferior parietal lobule, and strong activations in the visual cortex. There were no significant differences between subjects with schizophrenia and controls in this multi-site fMRI study. Furthermore, there was no significant difference in laterality found between healthy controls and schizophrenic subjects. This study can serve as a baseline measurement of schizophrenic dysfunction in other cognitive processes.
Adult
;
Aged
;
Brain Mapping
;
Case-Control Studies
;
Female
;
Healthy Volunteers
;
Humans
;
*Magnetic Resonance Imaging
;
Male
;
Middle Aged
;
Motor Cortex/anatomy & histology/*radiography
;
Schizophrenia/*diagnosis
;
Visual Cortex/anatomy & histology/radiography
;
Young Adult
10.Magnetic resonance image fusion based on three dimensional band limited shearlet transform.
Chang DUAN ; Xuegang WANG ; Hong WANG ; Shuai WANG
Journal of Biomedical Engineering 2015;32(1):181-196
More and more medical devices can capture different features of human body and form three dimensional (3D) images. In clinical applications, usually it is required to fuse multiple source images containing different and crucial information into one for the purpose of assisting medical treatment. However, traditional image fusion methods are normally designed for two dimensional (2D) images and will lead to loss of the third dimensional information if directly applied to 3D data. Therefore, a novel 3D magnetic image fusion method was proposed based on the combination of newly invented beyond wavelet transform, called 3D band limited shearlet transformand (BLST), and four groups of traditional fusion rules. The proposed method was then compared with the 2D and 3D wavelet and dual-tree complex wavelet transform fusion methods through 4 groups of human brain T2* and quantitative susceptibility mapping (QSM) images. The experiments indicated that the performance of the method based on 3D transform was generally superior to the existing methods based on 2D transform. Taking advantage of direction representation, shearlet transform could effectively improve the performance of conventional fusion method based on 3D transform. It is well concluded, therefore, that the proposed method is the best among the methods based on 2D and 3D transforms.
Algorithms
;
Brain
;
anatomy & histology
;
Humans
;
Imaging, Three-Dimensional
;
Magnetic Resonance Imaging
;
Wavelet Analysis

Result Analysis
Print
Save
E-mail