1.Human umbilical cord mesenchymal stem cells protect against neonatal white matter injury by activating the Nrf2/Keap1/HO-1 signaling pathway.
Chao WANG ; Meng-Xin WANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1398-1407
OBJECTIVES:
To investigate whether human umbilical cord mesenchymal stem cells (HUC-MSCs) play protective effects against white matter injury (WMI) in neonatal rats via activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)/heme oxygenase-1 (HO-1) signaling pathway.
METHODS:
A neonatal WMI model was established in 3-day-old Sprague-Dawley rats by unilateral common carotid artery ligation combined with hypoxia. The study comprised two parts. (1) Rats were randomized into sham, hypoxia-ischemia (HI), and HUC-MSC groups (n=36 per group); brain tissues were collected at 7, 14, and 21 days after modeling. (2) Rats were randomized into sham, HI, HUC-MSC, and HUC-MSC+ML385 (Nrf2 inhibitor) groups (n=12 per group); tissues were collected 14 days after modeling. Hematoxylin-eosin staining assessed histopathology, and Luxol fast blue staining evaluated myelination. Immunohistochemistry examined the localization and expression of Nrf2, myelin basic protein (MBP), and proteolipid protein (PLP). Immunofluorescence assessed synaptophysin (SYP) and postsynaptic density-95 (PSD-95). Western blotting quantified Nrf2, Keap1, HO-1, SYP, PSD-95, MBP, and PLP. Spatial learning and memory were evaluated by the Morris water maze.
RESULTS:
At 7, 14, and 21 days after modeling, the sham group showed intact white matter, whereas the HI group exhibited white matter disruption, cellular vacuolation, and disorganized nerve fibers. These pathological changes were attenuated in the HUC-MSC group. Compared with the HI group, the HUC-MSC group showed increased Nrf2 immunopositivity and protein levels, increased HO-1 protein levels, and decreased Keap1 protein levels (P<0.05). Compared with the HI group, the HUC-MSC group had higher SYP and PSD-95 immunofluorescence intensities and protein levels, higher MBP and PLP positivity and protein levels, increased mean optical density of myelin, more platform crossings, and longer time in the target quadrant (all P<0.05). These improvements were reduced in the HUC-MSC+ML385 group compared with the HUC-MSC group (P<0.05).
CONCLUSIONS
HUC-MSCs may promote oligodendrocyte maturation and synaptogenesis after neonatal WMI by activating the Nrf2/Keap1/HO-1 pathway, thereby improving spatial cognitive function.
NF-E2-Related Factor 2/physiology*
;
Animals
;
Rats, Sprague-Dawley
;
Signal Transduction/physiology*
;
Humans
;
Rats
;
White Matter/pathology*
;
Kelch-Like ECH-Associated Protein 1/physiology*
;
Umbilical Cord/cytology*
;
Heme Oxygenase-1/physiology*
;
Animals, Newborn
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Heme Oxygenase (Decyclizing)/physiology*
;
Mesenchymal Stem Cells/physiology*
;
Female
;
Hypoxia-Ischemia, Brain
2.Autophagy in Oligodendrocyte Lineage Cells Controls Oligodendrocyte Numbers and Myelin Integrity in an Age-dependent Manner.
Hong CHEN ; Gang YANG ; De-En XU ; Yu-Tong DU ; Chao ZHU ; Hua HU ; Li LUO ; Lei FENG ; Wenhui HUANG ; Yan-Yun SUN ; Quan-Hong MA
Neuroscience Bulletin 2025;41(3):374-390
Oligodendrocyte lineage cells, including oligodendrocyte precursor cells (OPCs) and oligodendrocytes (OLs), are essential in establishing and maintaining brain circuits. Autophagy is a conserved process that keeps the quality of organelles and proteostasis. The role of autophagy in oligodendrocyte lineage cells remains unclear. The present study shows that autophagy is required to maintain the number of OPCs/OLs and myelin integrity during brain aging. Inactivation of autophagy in oligodendrocyte lineage cells increases the number of OPCs/OLs in the developing brain while exaggerating the loss of OPCs/OLs with brain aging. Inactivation of autophagy in oligodendrocyte lineage cells impairs the turnover of myelin basic protein (MBP). It causes MBP to accumulate in the cytoplasm as multimeric aggregates and fails to be incorporated into integral myelin, which is associated with attenuated endocytic recycling. Inactivation of autophagy in oligodendrocyte lineage cells impairs myelin integrity and causes demyelination. Thus, this study shows autophagy is required to maintain myelin quality during aging by controlling the turnover of myelin components.
Animals
;
Autophagy/physiology*
;
Oligodendroglia/metabolism*
;
Myelin Sheath/physiology*
;
Aging/pathology*
;
Myelin Basic Protein/metabolism*
;
Cell Lineage/physiology*
;
Mice
;
Oligodendrocyte Precursor Cells
;
Mice, Inbred C57BL
;
Brain/cytology*
;
Cells, Cultured
;
Cell Count
3.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
4.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
5.Neurologic Manifestations of Enterovirus 71 Infection in Korea.
Kyung Yeon LEE ; Myoung Sook LEE ; Dong Bin KIM
Journal of Korean Medical Science 2016;31(4):561-567
Enterovirus 71 frequently involves the central nervous system and may present with a variety of neurologic manifestations. Here, we aimed to describe the clinical features, magnetic resonance imaging (MRI) findings, and cerebrospinal fluid (CSF) profiles of patients presenting with neurologic complications of enterovirus 71 infection. We retrospectively reviewed the records of 31 pediatric patients hospitalized with acute neurologic manifestations accompanied by confirmed enterovirus 71 infection at Ulsan University Hospital between 2010 and 2014. The patients' mean age was 2.9 ± 5.5 years (range, 18 days to 12 years), and 80.6% of patients were less than 4 years old. Based on their clinical features, the patients were classified into 4 clinical groups: brainstem encephalitis (n = 21), meningitis (n = 7), encephalitis (n = 2), and acute flaccid paralysis (n = 1). The common neurologic symptoms included myoclonus (58.1%), lethargy (54.8%), irritability (54.8%), vomiting (48.4%), ataxia (38.7%), and tremor (35.5%). Twenty-five patients underwent an MRI scan; of these, 14 (56.0%) revealed the characteristic increased T2 signal intensity in the posterior region of the brainstem and bilateral cerebellar dentate nuclei. Twenty-six of 30 patients (86.7%) showed CSF pleocytosis. Thirty patients (96.8%) recovered completely without any neurologic deficits; one patient (3.2%) died due to pulmonary hemorrhage and shock. In the present study, brainstem encephalitis was the most common neurologic manifestation of enterovirus 71 infection. The characteristic clinical symptoms such as myoclonus, ataxia, and tremor in conjunction with CSF pleocytosis and brainstem lesions on MR images are pathognomonic for diagnosis of neurologic involvement by enterovirus 71 infection.
Acute Disease
;
Brain/diagnostic imaging
;
Central Nervous System Diseases/etiology/*pathology
;
Child
;
Child, Preschool
;
Encephalitis/pathology
;
Enterovirus A, Human/genetics/*isolation & purification
;
Enterovirus Infections/drug therapy/*pathology/virology
;
Feces/virology
;
Female
;
Humans
;
Immunoglobulins/administration & dosage
;
Infant
;
Injections, Intravenous
;
Leukocytes/cytology
;
Leukocytosis/cerebrospinal fluid/pathology
;
Magnetic Resonance Imaging
;
Male
;
RNA, Viral/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Republic of Korea
;
Retrospective Studies
;
Seasons
6.Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia.
Jintao BAO ; Liangjun ZHENG ; Qi ZHANG ; Xinya LI ; Xuefei ZHANG ; Zeyang LI ; Xue BAI ; Zhong ZHANG ; Wei HUO ; Xuyang ZHAO ; Shujiang SHANG ; Qingsong WANG ; Chen ZHANG ; Jianguo JI
Protein & Cell 2016;7(6):417-433
Microglia play a pivotal role in clearance of Aβ by degrading them in lysosomes, countering amyloid plaque pathogenesis in Alzheimer's disease (AD). Recent evidence suggests that lysosomal dysfunction leads to insufficient elimination of toxic protein aggregates. We tested whether enhancing lysosomal function with transcription factor EB (TFEB), an essential regulator modulating lysosomal pathways, would promote Aβ clearance in microglia. Here we show that microglial expression of TFEB facilitates fibrillar Aβ (fAβ) degradation and reduces deposited amyloid plaques, which are further enhanced by deacetylation of TFEB. Using mass spectrometry analysis, we firstly confirmed acetylation as a previously unreported modification of TFEB and found that SIRT1 directly interacted with and deacetylated TFEB at lysine residue 116. Subsequently, SIRT1 overexpression enhanced lysosomal function and fAβ degradation by upregulating transcriptional levels of TFEB downstream targets, which could be inhibited when TFEB was knocked down. Furthermore, overexpression of deacetylated TFEB at K116R mutant in microglia accelerated intracellular fAβ degradation by stimulating lysosomal biogenesis and greatly reduced the deposited amyloid plaques in the brain slices of APP/PS1 transgenic mice. Our findings reveal that deacetylation of TFEB could regulate lysosomal biogenesis and fAβ degradation, making microglial activation of TFEB a possible strategy for attenuating amyloid plaque deposition in AD.
Alzheimer Disease
;
metabolism
;
pathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
genetics
;
metabolism
;
Animals
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
chemistry
;
genetics
;
metabolism
;
Brain
;
metabolism
;
Cells, Cultured
;
Chloride Channels
;
genetics
;
metabolism
;
Disease Models, Animal
;
HEK293 Cells
;
Humans
;
Lysosomes
;
genetics
;
metabolism
;
Mice
;
Mice, Transgenic
;
Microglia
;
cytology
;
metabolism
;
Mutagenesis, Site-Directed
;
Peptides
;
analysis
;
chemistry
;
Protein Binding
;
RNA Interference
;
Sirtuin 1
;
antagonists & inhibitors
;
genetics
;
metabolism
7.Effect of chemical microenvironment after traumatic brain injury on temperature-sensitive umbilical cord mesenchymal stem cells.
Ming-liang ZHAO ; Yi-sheng CHEN ; Xiao-hong LI ; Jing-jing WANG ; Yue TU ; Hong-tao SUN ; Sai ZHANG ; Chonga CHEN
Chinese Journal of Applied Physiology 2015;31(3):207-215
OBJECTIVETo simulate the chemical microenvironment of injured brain tissue, and to explore the effect of this chemical microenvironment on temperature sensitive umbilical cord mesenchymal stem cells (tsUC).
METHODSRat models of traumatic brain injury (TBI) were made by fluid percussion injury, and then the brain tissue extracts of the injured regions were acquired. Human umbilical cord mesenchymal stem cells (UC) were isolated and cultured, and the tsUC were obtained through the infection of temperature-sensitive Simian 40 Large T- antigen (ts-SV40LT) retrovirus. After that, both the two kinds of cells were cultured on the polyacrylamide gels which mimicking the elastic modulus of brain. Four groups were included: UC cultured under normal temperature (UC group), UC cultured added brain tissue extract under normal temperature (UC plus extract group), tsUC cultured under mild hypothermia (tsUC group), and tsUC added brain tissue extract under mild hypothermia for 3 days, then normal temperature for 4 days (tsUC plus extract group). After 24 hours, the apoptosis level was checked. Cell growth and morphological changes in each group were given dynamic observation. Seven days later, cell immunofluorescences were implemented for examining neural differentiation level.
RESULTSCompared with UC plus extract group, the apoptosis and proliferation in UC plus extract group were significantly reduced (P < 0.01) and increased (P < 0.01) respectively. Cell immunofluorescence showed that the both GFAP and Neuron positive cells were significantly enhanced in UC plus extract group than those in tsUC plus extract group.
CONCLUSIONtsUC combining with mild hypothermia could significantly reverse injury induced cell apoptosis, improve cell proliferation and neural differentiation under chemical microenvironment after brain injury, which confirmed the adaptation and resistance of tsUC under mild hypothermia after TBI.
Animals ; Apoptosis ; Brain ; cytology ; pathology ; Brain Injuries ; pathology ; Cell Proliferation ; Humans ; Mesenchymal Stromal Cells ; chemistry ; Neurons ; cytology ; Rats ; Temperature ; Umbilical Cord ; cytology
8.Effect of basic fibroblast growth factor on endogenous neural stem cell in rat cerebral cortex with global cerebral ischemia-reperfusion.
Mingxin REN ; Xiaohui DENG ; Yiwei GUO ; Fengjin ZHENG ; Zhibo FENG
Journal of Biomedical Engineering 2014;31(4):846-849
The present paper is aimedto investigate the effect of basic fibroblast growth factor (bFGF) on proliferation, migration and differentiation of endogenous neural stem cell in rat cerebral cortex with global brain ischemia-reperfusion. A global brain ischemia-reperfusion model was established. Immunohistochemistry was used to observe the pathological changes and the expression of BrdU and Nestin in cerebral cortex. RT-PCR was used to measure the NSE mRNA in brain tissue. The results of measurements indicated that in sham operation group, there was no positive cell in cerebral cortex, and the content of NSE mRNA did not change. In the operation group, the expression of BrdU and Nestin increased significantly at the end of the 3rd day, and peaked on the 7th day. NSE mRNA expression did not significantly increase. In bFGF group, compared with sham operation group and model group, the number of BrdU-positive and Nestin-positive cells increased significantly at each time point (P<0. 05), and peaked at the end of the 11th day, and the content of NSE mRNA increased significantly (P<0. 05). This research demonstrated that the proliferation of endogenous neural stem cells in situ could be induced by global cerebral ischemia and reperfu- sion, and could be promoted and extended by bFGF. In additiion, bFGF might promote endogenous neural stem cells differentiated into neurons.
Animals
;
Brain Ischemia
;
pathology
;
Cell Differentiation
;
Cell Movement
;
Cell Proliferation
;
Cerebral Cortex
;
cytology
;
metabolism
;
pathology
;
Fibroblast Growth Factor 2
;
pharmacology
;
Nestin
;
metabolism
;
Neural Stem Cells
;
drug effects
;
Rats
;
Reperfusion Injury
9.Transplantation of human embryonic neural stem cells protects rats against cerebral ischemic injury.
Xiao-Yan LIU ; Chang-Peng WANG ; Ming LIU ; Gang JI ; Jing-Chun GUO
Acta Physiologica Sinica 2014;66(6):691-701
The purpose of this study is to explore the fate and effect of human embryonic neural stem cells (hNSCs) after transplantation into ipsilateral lateral ventricle of stroke rats. Adult rats were exposed to one-hour transient middle cerebral artery occlusion (MCAO), and then hNSCs were transplanted into ipsilateral lateral ventricle 7 days after reperfusion. Infarct volume was calculated by cresyl violet staining. The improvements of neural functions were assessed by behavioral tests. Immunofluorescence staining was performed to observe the migration and differentiation of transplanted hNSCs. The results showed that transplanted hNSCs significantly reduced ischemia-induced infarction in MCAO rats, and improved neural functional restoration when assessed by rotarod, footfault and corner-turn tests. The grafted cells migrated predominantly to several specific brain regions, such as corpus callosum and peri-infarct area. Furthermore, these cells differentiated into oligodendrocytes and astrocytes in corpus callosum, and neurons in peri-infarct parenchyma. These results suggest that transplanted hNSCs through lateral ventricle of the ischemic side may exert effective therapeutic effects on stroke rats via migration and differentiation in specific brain regions.
Animals
;
Astrocytes
;
cytology
;
Brain
;
cytology
;
pathology
;
Cell Differentiation
;
Cell Movement
;
Humans
;
Infarction, Middle Cerebral Artery
;
therapy
;
Lateral Ventricles
;
Neural Stem Cells
;
transplantation
;
Neurons
;
cytology
;
Oligodendroglia
;
cytology
;
Rats
;
Rats, Sprague-Dawley
10.Establishment of a method for detecting peripheral blood circulating brain microvascular endothelial cells, a novel biomarker for blood-brain barrier injury.
Yan LI ; Lei DU ; Lin YUAN ; Dexi CHEN ; Jiawen QIU ; Xiaolong HE ; Hong CAO ; Shenghe HUANG
Journal of Southern Medical University 2014;34(12):1733-1737
OBJECTIVETo establish a method for detecting circulating brain microvascular endothelial cells (cBMECs), a novel biomarker of blood-brain barrier (BBB) injury.
METHODSBlood samples were collected from 33 patients with AIDS encephalitis and 13 healthy subjects for detection of cBMECs, cECs and EPCs using magnetic affinity isolation and immune identification technology.
RESULTSThe numbers of cBMECs, cECs and EPCs were significantly higher in the AIDS patients than in the control subjects (t=4.298, P<0.01; t=4.886, P<0.01; t=4.889, P<0.01). An significant association was also noted between HIV load and cBMEC number (r=0.928, P<0.01).
CONCLUSIONWe have successfully established a method for detecting peripheral blood cBMECs, which can be of important value in non-invasive assessment of BBB injury.
Acquired Immunodeficiency Syndrome ; physiopathology ; Biomarkers ; Blood-Brain Barrier ; pathology ; Cell Separation ; methods ; Cells, Cultured ; Endothelial Progenitor Cells ; cytology ; Humans

Result Analysis
Print
Save
E-mail