1.Distinct cell populations of ventral tegmental area process motivated behavior
Min Jung KIM ; Bong-Kiun KAANG
The Korean Journal of Physiology and Pharmacology 2022;26(5):307-312
It is well known that dopamine transmission from the ventral tegmental area (VTA) modulates motivated behavior and reinforcement learning. Although dopaminergic neurons are the major type of VTA neurons, recent studies show that a significant proportion of the VTA contains GABAergic and type 2 vesicular glutamate transporter (VGLUT2)-positive neurons. The non-dopaminergic neurons are also critically involved in regulating motivated behaviors. Some VTA neurons appear to co-release two different types of neurotransmitters. They are VGLUT2-DA neurons, VGLUT2-GABA neurons and GABA-DA neurons. These co-releasing neurons show distinct features compared to the neurons that release a single neurotransmitter. Here, we review how VTA cell populations wire to the other brain regions and how these projections differentially contribute to motivated behavior through the distinct molecular mechanism. We summarize the activities, projections and functions of VTA neurons concerning motivated behavior. This review article discriminates VTA cell populations related to the motivated behavior based on the neurotransmitters they release and extends the classical view of the dopamine-mediated reward system.
2.The Three Musketeers in the Medial Prefrontal Cortex: Subregion-specific Structural and Functional Plasticity Underlying Fear Memory Stages
Yongmin SUNG ; Bong-Kiun KAANG
Experimental Neurobiology 2022;31(4):221-231
Fear memory recruits various brain regions with long-lasting brain-wide subcellular events. The medial prefrontal cortex processes the emotional and cognitive functions required for adequately handling fear memory. Several studies have indicated that subdivisions within the medial prefrontal cortex, namely the prelimbic, infralimbic, and anterior cingulate cortices, may play different roles across fear memory states. Through a dedicated cytoarchitecture and connectivity, the three different regions of the medial prefrontal cortex play a specific role in maintaining and extinguishing fear memory. Furthermore, synaptic plasticity and maturation of neural circuits within the medial prefrontal cortex suggest that remote memories undergo structural and functional reorganization. Finally, recent technical advances have enabled genetic access to transiently activated neuronal ensembles within these regions, suggesting that memory trace cells in these regions may preferentially contribute to processing specific fear memory. We reviewed recently published reports and summarize the molecular, synaptic and cellular events occurring within the medial prefrontal cortex during various memory stages.
3.Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors
Jihae OH ; Chiwoo LEE ; Bong Kiun KAANG
The Korean Journal of Physiology and Pharmacology 2019;23(4):237-249
Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.
Animals
;
Behavior, Animal
;
Brain
;
Calcium Channels
;
Calcium
;
Carisoprodol
;
Endoscopy
;
Fires
;
Fluorescence
;
Ions
;
Microscopy
;
Neuronal Calcium-Sensor Proteins
;
Neurons
;
Neurosciences
;
Statistics as Topic
4.Spatial Learning and Motor Deficits in Vacuolar Protein Sorting-associated Protein 13b (Vps13b) Mutant Mouse
Min Jung KIM ; Ro Un LEE ; Jihae OH ; Ja Eun CHOI ; Hyopil KIM ; Kyungmin LEE ; Su Kyeong HWANG ; Jae Hyung LEE ; Jin A LEE ; Bong Kiun KAANG ; Chae Seok LIM ; Yong Seok LEE
Experimental Neurobiology 2019;28(4):485-494
Vacuolar protein sorting-associated protein 13B (VPS13B), also known as COH1, is one of the VPS13 family members which is involved in transmembrane transport, Golgi integrity, and neuritogenesis. Mutations in the VPS13B gene are associated with Cohen syndrome and other cognitive disorders such as intellectual disabilities and autism spectrum disorder (ASD). However, the patho-physiology of VPS13B-associated cognitive deficits is unclear, in part, due to the lack of animal models. Here, we generated a Vps13b exon 2 deletion mutant mouse and analyzed the behavioral phenotypes. We found that Vps13b mutant mice showed reduced activity in open field test and significantly shorter latency to fall in the rotarod test, suggesting that the mutants have motor deficits. In addition, we found that Vps13b mutant mice showed deficits in spatial learning in the hidden platform version of the Morris water maze. The Vps13b mutant mice were normal in other behaviors such as anxiety-like behaviors, working memory and social behaviors. Our results suggest that Vps13b mutant mice may recapitulate key clinical symptoms in Cohen syndrome such as intellectual disability and hypotonia. Vps13b mutant mice may serve as a useful model to investigate the pathophysiology of VPS13B-associated disorders.
Animals
;
Autism Spectrum Disorder
;
Cognition Disorders
;
Exons
;
Humans
;
Intellectual Disability
;
Learning Disorders
;
Memory, Short-Term
;
Mice
;
Models, Animal
;
Muscle Hypotonia
;
Phenotype
;
Rotarod Performance Test
;
Social Behavior
;
Spatial Learning
;
Water
5.Circadian Regulation by REV-ERBα Mediates Hippocampal E-LTP in a Time-dependent Manner.
Ja Eun CHOI ; Somi KIM ; Jisu LEE ; Kyungjin KIM ; Bong Kiun KAANG
Experimental Neurobiology 2018;27(5):344-349
Circadian rhythms are driven by circadian oscillators, and these rhythms result in the biological phenomenon of 24-h oscillations. Previous studies suggest that learning and memory are affected by circadian rhythms. One of the genes responsible for generating the circadian rhythm is Rev-erbα. The REV-ERBα protein is a nuclear receptor that acts as a transcriptional repressor, and is a core component of the circadian clock. However, the role of REV-ERBα in neurophysiological processes in the hippocampus has not been characterized yet. In this study, we examined the time-dependent role of REV-ERBα in hippocampal synaptic plasticity using Rev-erbα KO mice. The KO mice lacking REV-ERBα displayed abnormal NMDAR-dependent synaptic potentiation (E-LTP) at CT12~CT14 (subjective night) when compared to their wild-type littermates. However, Rev-erbα KO mice exhibited normal E-LTP at CT0~CT2 (subjective day). We also found that the Rev-erbα KO mice had intact late LTP (L-LTP) at both subjective day and night. Taken together, these results provide evidence that REV-ERBα is critical for hippocampal E-LTP during the dark period.
Animals
;
Biological Phenomena
;
Circadian Clocks
;
Circadian Rhythm
;
Hippocampus
;
Learning
;
Long-Term Potentiation
;
Memory
;
Mice
;
Neuronal Plasticity
6.Epigenetic regulation and chromatin remodeling in learning and memory.
Experimental & Molecular Medicine 2017;49(1):e281-
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Acetylation
;
Chromatin Assembly and Disassembly*
;
Chromatin*
;
DNA Methylation
;
Epigenesis, Genetic
;
Epigenomics*
;
Gene Expression Regulation
;
Genome
;
Histones
;
Learning*
;
Memory*
;
Memory, Long-Term
;
Methylation
;
Nervous System Diseases
;
Neurosciences
;
Pathology
;
Protein Processing, Post-Translational
7.Inhibition of anterior cingulate cortex excitatory neuronal activity induces conditioned place preference in a mouse model of chronic inflammatory pain.
Sukjae Joshua KANG ; Siyong KIM ; Jaehyun LEE ; Chuljung KWAK ; Kyungmin LEE ; Min ZHUO ; Bong Kiun KAANG
The Korean Journal of Physiology and Pharmacology 2017;21(5):487-493
The anterior cingulate cortex (ACC) is known for its role in perception of nociceptive signals and the associated emotional responses. Recent optogenetic studies, involving modulation of neuronal activity in the ACC, show that the ACC can modulate mechanical hyperalgesia. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC in a model of chronic inflammatory pain to assess their motivational effect in the conditioned place preference (CPP) test. Selective inhibition of pyramidal neurons induced preference during the CPP test, while activation of parvalbumin (PV)-specific neurons did not. Moreover, chemogenetic inhibition of the excitatory pyramidal neurons alleviated mechanical hyperalgesia, consistent with our previous result. Our results provide evidence for the analgesic effect of inhibition of ACC excitatory pyramidal neurons and a prospective treatment for chronic pain.
Animals
;
Chronic Pain
;
Gyrus Cinguli*
;
Hyperalgesia
;
Interneurons
;
Mice*
;
Neurons*
;
Optogenetics
;
Prospective Studies
;
Pyramidal Cells
8.Mildly Increased Mechanical Nociceptive Sensitivity in REV-ERBα Knock-out Mice.
Jaehyun LEE ; Hyoung Gon KO ; Kyungjin KIM ; Bong Kiun KAANG
Experimental Neurobiology 2016;25(6):342-346
Nociception is one of the most complex senses that is affected not only by external stimulation but also internal conditions. Previous studies have suggested that circadian rhythm is important in modulating nociception. REV-ERBα knock-out (KO) mice have disrupted circadian rhythm and altered mood-related phenotypes. In this study, we examined the role of REV-ERBα in inflammatory nociception. We found that the nociceptive sensitivity of KO mice was partially enhanced in mechanical nociception. However, this partial alteration was independent of the circadian rhythm. Taken together, deletion of REV-ERBα induced a mild change in mechanical nociceptive sensitivity but this alteration was not dependent on the circadian rhythm.
Animals
;
Circadian Rhythm
;
Mice
;
Mice, Knockout*
;
Nociception
;
Phenotype
9.Which Neurons Will Be the Engram - Activated Neurons and/or More Excitable Neurons?.
Ji Il KIM ; Hye Yeon CHO ; Jin Hee HAN ; Bong Kiun KAANG
Experimental Neurobiology 2016;25(2):55-63
During past decades, the formation and storage principle of memory have received much attention in the neuroscience field. Although some studies have attempted to demonstrate the nature of the engram, elucidating the memory engram allocation mechanism was not possible because of the limitations of existing methods, which cannot specifically modulate the candidate neuronal population. Recently, the development of new techniques, which offer ways to mark and control specific populations of neurons, may accelerate solving this issue. Here, we review the recent advances, which have provided substantial evidence showing that both candidates (neuronal population that is activated by learning, and that has increased CREB level/excitability at learning) satisfy the criteria of the engram, which are necessary and sufficient for memory expression.
Learning
;
Memory
;
Neurons*
;
Neurosciences
10.Which Neurons Will Be the Engram - Activated Neurons and/or More Excitable Neurons?.
Ji Il KIM ; Hye Yeon CHO ; Jin Hee HAN ; Bong Kiun KAANG
Experimental Neurobiology 2016;25(2):55-63
During past decades, the formation and storage principle of memory have received much attention in the neuroscience field. Although some studies have attempted to demonstrate the nature of the engram, elucidating the memory engram allocation mechanism was not possible because of the limitations of existing methods, which cannot specifically modulate the candidate neuronal population. Recently, the development of new techniques, which offer ways to mark and control specific populations of neurons, may accelerate solving this issue. Here, we review the recent advances, which have provided substantial evidence showing that both candidates (neuronal population that is activated by learning, and that has increased CREB level/excitability at learning) satisfy the criteria of the engram, which are necessary and sufficient for memory expression.
Learning
;
Memory
;
Neurons*
;
Neurosciences

Result Analysis
Print
Save
E-mail