1.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
2.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
3.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
4.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
5.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
6.Contemporary Statistics of Acute Ischemic Stroke and Transient Ischemic Attack in 2021: Insights From the CRCS-K-NIH Registry
Do Yeon KIM ; Tai Hwan PARK ; Yong-Jin CHO ; Jong-Moo PARK ; Kyungbok LEE ; Minwoo LEE ; Juneyoung LEE ; Sang Yoon BAE ; Da Young HONG ; Hannah JUNG ; Eunvin KO ; Hyung Seok GUK ; Beom Joon KIM ; Jun Yup KIM ; Jihoon KANG ; Moon-Ku HAN ; Sang-Soon PARK ; Keun-Sik HONG ; Hong-Kyun PARK ; Jeong-Yoon LEE ; Byung-Chul LEE ; Kyung-Ho YU ; Mi Sun OH ; Dong-Eog KIM ; Dong-Seok GWAK ; Soo Joo LEE ; Jae Guk KIM ; Jun LEE ; Doo Hyuk KWON ; Jae-Kwan CHA ; Dae-Hyun KIM ; Joon-Tae KIM ; Kang-Ho CHOI ; Hyunsoo KIM ; Jay Chol CHOI ; Joong-Goo KIM ; Chul-Hoo KANG ; Sung-il SOHN ; Jeong-Ho HONG ; Hyungjong PARK ; Sang-Hwa LEE ; Chulho KIM ; Dong-Ick SHIN ; Kyu Sun YUM ; Kyusik KANG ; Kwang-Yeol PARK ; Hae-Bong JEONG ; Chan-Young PARK ; Keon-Joo LEE ; Jee Hyun KWON ; Wook-Joo KIM ; Ji Sung LEE ; Hee-Joon BAE ;
Journal of Korean Medical Science 2024;39(34):e278-
This report presents the latest statistics on the stroke population in South Korea, sourced from the Clinical Research Collaborations for Stroke in Korea-National Institute for Health (CRCS-K-NIH), a comprehensive, nationwide, multicenter stroke registry. The Korean cohort, unlike western populations, shows a male-to-female ratio of 1.5, attributed to lower risk factors in Korean women. The average ages for men and women are 67 and 73 years, respectively.Hypertension is the most common risk factor (67%), consistent with global trends, but there is a higher prevalence of diabetes (35%) and smoking (21%). The prevalence of atrial fibrillation (19%) is lower than in western populations, suggesting effective prevention strategies in the general population. A high incidence of large artery atherosclerosis (38%) is observed, likely due to prevalent intracranial arterial disease in East Asians and advanced imaging techniques.There has been a decrease in intravenous thrombolysis rates, from 12% in 2017–2019 to 10% in 2021, with no improvements in door-to-needle and door-to-puncture times, worsened by the coronavirus disease 2019 pandemic. While the use of aspirin plus clopidogrel for noncardioembolic stroke and direct oral anticoagulants for atrial fibrillation is well-established, the application of direct oral anticoagulants for non-atrial fibrillation cardioembolic strokes in the acute phase requires further research. The incidence of early neurological deterioration (13%) and the cumulative incidence of recurrent stroke at 3 months (3%) align with global figures. Favorable outcomes at 3 months (63%) are comparable internationally, yet the lack of improvement in dependency at 3 months highlights the need for advancements in acute stroke care.
7.Efficacy and Safety of Lurasidone vs. Quetiapine XR in Acutely Psychotic Patients With Schizophrenia in Korea: A Randomized, Double-Blind, Active-Controlled Trial
Se Hyun KIM ; Do-Un JUNG ; Do Hoon KIM ; Jung Sik LEE ; Kyoung-Uk LEE ; Seunghee WON ; Bong Ju LEE ; Sung-Gon KIM ; Sungwon ROH ; Jong-Ik PARK ; Minah KIM ; Sung Won JUNG ; Hong Seok OH ; Han-yong JUNG ; Sang Hoon KIM ; Hyun Seung CHEE ; Jong-Woo PAIK ; Kyu Young LEE ; Soo In KIM ; Seung-Hwan LEE ; Eun-Jin CHEON ; Hye-Geum KIM ; Heon-Jeong LEE ; In Won CHUNG ; Joonho CHOI ; Min-Hyuk KIM ; Seong-Jin CHO ; HyunChul YOUN ; Jhin-Goo CHANG ; Hoo Rim SONG ; Euitae KIM ; Won-Hyoung KIM ; Chul Eung KIM ; Doo-Heum PARK ; Byung-Ook LEE ; Jungsun LEE ; Seung-Yup LEE ; Nuree KANG ; Hee Yeon JUNG
Psychiatry Investigation 2024;21(7):762-771
Objective:
This study was performed to evaluate the efficacy and safety of lurasidone (160 mg/day) compared to quetiapine XR (QXR; 600 mg/day) in the treatment of acutely psychotic patients with schizophrenia.
Methods:
Patients were randomly assigned to 6 weeks of double-blind treatment with lurasidone 160 mg/day (n=105) or QXR 600 mg/day (n=105). Primary efficacy measure was the change from baseline to week 6 in Positive and Negative Syndrome Scale (PANSS) total score and Clinical Global Impressions severity (CGI-S) score. Adverse events, body measurements, and laboratory parameters were assessed.
Results:
Lurasidone demonstrated non-inferiority to QXR on the PANSS total score. Adjusted mean±standard error change at week 6 on the PANSS total score was -26.42±2.02 and -27.33±2.01 in the lurasidone and QXR group, respectively. The mean difference score was -0.91 (95% confidence interval -6.35–4.53). The lurasidone group showed a greater reduction in PANSS total and negative subscale on week 1 and a greater reduction in end-point CGI-S score compared to the QXR group. Body weight, body mass index, and waist circumference in the lurasidone group were reduced, with significantly lower mean change compared to QXR. Endpoint changes in glucose, cholesterol, triglycerides, and low-density lipoprotein levels were also significantly lower. The most common adverse drug reactions with lurasidone were akathisia and nausea.
Conclusion
Lurasidone 160 mg/day was found to be non-inferior to QXR 600 mg/day in the treatment of schizophrenia with comparable efficacy and tolerability. Adverse effects of lurasidone were generally tolerable, and beneficial effects on metabolic parameters can be expected.
8.KAAACI Allergic Rhinitis Guidelines: Part 2. Update in nonpharmacotherapy
Sang Chul PARK ; Soo Jie CHUNG ; Jeong-Hee CHOI ; Yong Ju LEE ; Hyeon-Jong YANG ; Do-Yang PARK ; Dong-Kyu KIM ; Il Hwan LEE ; Soo Whan KIM ; Do Hyun KIM ; Young Joon JUN ; Song-I YANG ; Minji KIM ; Gwanghui RYU ; Sung-Yoon KANG ; Sang Min LEE ; Mi-Ae KIM ; Hyun-Jung KIM ; Gil-Soon CHOI ; Hyun Jong LEE ; Hyo-Bin KIM ; Bong-Seong KIM
Allergy, Asthma & Respiratory Disease 2023;11(3):126-134
Allergic rhinitis is the most common chronic disease worldwide. Various upper airway symptoms lower quality of life, and due to the recurrent symptoms, multiple treatments are usually attempted rather than one definitive treatment. There are alternatives to medical (medication-based) and nonmedical treatments. A guideline is needed to understand allergic rhinitis and develop an appropriate treatment plan. We have developed guidelines for medical treatment based on previous reports. The current guidelines herein are associated with the “KAAACI Evidence-Based Guidelines for Allergic Rhinitis in Korea, Part 1: Update in pharmacotherapy” in which we aimed to provide evidence-based recommendations for the medical treatment of allergic rhinitis. Part 2 focuses on nonpharmacological management, including allergen-specific immunotherapy, subcutaneous or sublingual immunotherapy, nasal saline irrigation, environmental management strategies, companion animal management, and nasal turbinate surgery. The evidence to support the treatment efficacy, safety, and selection has been systematically reviewed. However, larger controlled studies are needed to elevate the level of evidence to select rational non-medical therapeutic options for patients with allergic rhinitis.
9.KAAACI Allergic Rhinitis Guidelines: Part 1. Update in pharmacotherapy
Minji KIM ; Sung-Yoon KANG ; Song-I YANG ; Il Hwan LEE ; Gwanghui RYU ; Mi-Ae KIM ; Sang Min LEE ; Hyun-Jung KIM ; Do-Yang PARK ; Yong Ju LEE ; Dong-Kyu KIM ; Do Hyun KIM ; Young Joon JUN ; Sang Chul PARK ; Bong-Seong KIM ; Soojie CHUNG ; Hyun Jong LEE ; Hyo-Bin KIM ; Jeong-Hee CHOI ; Gil-Soon CHOI ; Hyeon-Jong YANG ; Soo Whan KIM
Allergy, Asthma & Respiratory Disease 2023;11(3):117-125
The prevalence of allergic rhinitis (AR) and the socioeconomic burden associated with the medical cost and quality of life of AR have progressively increased. Therefore, practical guidelines for the appropriate management of AR need to be developed based on scientific evidence considering the real-world environment, values, and preferences of patients and physicians. The Korean Academy of Asthma, Allergy and Clinical Immunology revised clinical guidelines for AR to address key clinical questions of the management of AR. Part 1 of the revised guideline covers the pharmacological management of patients with AR in Korea. Through a meta-analysis and a systematic review, we made 4 recommendations for AR pharmacotherapy, including intranasal corticosteroid (INCS)/intranasal antihistamine combination therapy, oral antihistamine/INCS combination therapy, leukotriene receptor antagonist treatment in AR patients with asthma, and prophylactic treatment for patients with pollen-induced AR. However, all recommendations are conditional because of the low or very low evidence of certainty. Well-designed and strictly executed randomized controlled trials are needed to measure and report appropriate outcomes.
10.Incidence, Morbidity, and Mortality of Achalasia: A Nationwide, Population-Based Cohort Study in South Korea
Ga Hee KIM ; Hyungchul PARK ; Kee Wook JUNG ; Min-Ju KIM ; Ye-Jee KIM ; Ji Min LEE ; Bong Eun LEE ; Yang Won MIN ; Jeong Hwan KIM ; Hee Kyong NA ; Ji Yong AHN ; Jeong Hoon LEE ; Do Hoon KIM ; Kee Don CHOI ; Ho June SONG ; Gin Hyug LEE ; Hwoon-Yong JUNG ; Hyun Jin KIM ;
Gut and Liver 2023;17(6):894-904
Background/Aims:
Although an association between achalasia and esophageal cancer has been reported, whether achalasia confers a substantial increase in mortality is unknown. Moreover, the causes of death related to achalasia have not been investigated. We performed this nationwide, population-based cohort study on achalasia because no such study has been performed since the introduction of high-resolution manometry in 2008.
Methods:
This study was performed using data extracted from the Korean National Health Insurance Service database, covering a 9-year period from 2009 to 2017. Control participants without a diagnostic code for achalasia were randomly selected and matched by sex and birth year at a case-to-control ratio of 1:4. Data on the cause of death from Statistics Korea were also analyzed.
Results:
The overall incidence of achalasia was 0.68 per 100,000 person-years, and the prevalence was 6.46 per 100,000 population. Patients with achalasia (n=3,063) had significantly higher adjusted hazard ratio (aHR) for esophageal cancer (aHR, 3.40; 95% confidence interval [CI], 1.25 to 9.22; p=0.017), pneumonia (aHR, 2.30; 95% CI, 1.89 to 2.81; p<0.001), aspiration pneumonia (aHR, 3.92; 95% CI, 2.38 to 6.48; p<0.001), and mortality (aHR, 1.68; 95% CI, 1.44 to 1.94; p<0.001). Esophageal cancer carried the highest mortality risk (aHR, 8.82; 95% CI, 2.35 to 33.16; p=0.001), while pneumonia had the highest non-cancer mortality risk (aHR, 2.28; 95% CI, 1.31 to 3.96; p=0.004).
Conclusions
In this nationwide study, achalasia was associated with increased risk of mortality.Esophageal cancer and pneumonia were the most common comorbidities and the major causes of death in patients with achalasia.

Result Analysis
Print
Save
E-mail