1.The pleiotropic role of MEF2C in bone tissue development and metabolism.
Hao-Jie XIAO ; Rui-Qi HUANG ; Sheng-Jie LIN ; Jin-Yang LI ; Xue-Jie YI ; Hai-Ning GAO
Acta Physiologica Sinica 2025;77(2):374-384
The development of bone in human body and the maintenance of bone mass in adulthood are regulated by a variety of biological factors. Myocyte enhancer factor 2C (MEF2C), as one of the many factors regulating bone tissue development and balance, has been shown to play a key role in bone development and metabolism. However, there is limited systematic analysis on the effects of MEF2C on bone tissue. This article reviews the role of MEF2C in bone development and metabolism. During bone development, MEF2C promotes the development of neural crest cells (NC) into craniofacial cartilage and directly promotes cartilage hypertrophy. In terms of bone metabolism, MEF2C exhibits a differentiated regulatory model across different types of osteocytes, demonstrating both promoting and other potential regulatory effects on bone formation, with its stimulating effect on osteoclasts being determined. In view of the complex roles of MEF2C in bone tissue, this paper also discusses its effects on some bone diseases, providing valuable insights for the physiological study of bone tissue and strategies for the prevention of bone diseases.
Humans
;
MEF2 Transcription Factors/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Bone Development/physiology*
;
Osteogenesis/physiology*
;
Myogenic Regulatory Factors/physiology*
2.Roles and mechanisms of TRIM family proteins in the regulation of bone metabolism.
Jing YANG ; Rui-Qi HUANG ; Ke XU ; Mian-Mian YANG ; Xue-Jie YI ; Bo CHANG ; Ting-Ting YAO
Acta Physiologica Sinica 2025;77(3):472-482
Tripartite motif-containing (TRIM) family proteins are crucial E3 ubiquitin ligases that have garnered significant attention for their regulatory roles in bone metabolism in recent years. This article reviews the function and regulatory mechanisms of TRIM family proteins in bone metabolism, focusing on their dual roles in bone formation and resorption. It also provides a detailed analysis of signaling pathways and molecular mechanisms by which TRIM family members regulate the activities of osteoblasts and osteoclasts. Research findings suggest that modulating the expression or activity of TRIM family proteins could be beneficial for treating bone diseases such as osteoporosis. This review highlights the molecular mechanisms of TRIM family members in bone physiology and pathology, aiming to provide theoretical basis and scientific guidance for developing novel therapeutic strategies for bone diseases.
Humans
;
Ubiquitin-Protein Ligases/physiology*
;
Bone and Bones/metabolism*
;
Animals
;
Tripartite Motif Proteins/physiology*
;
Osteoclasts/metabolism*
;
Osteoblasts/metabolism*
;
Signal Transduction/physiology*
;
Osteogenesis/physiology*
3.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
4.Vitamin D and bone metabolism characteristics in knee osteoarthritis with osteoporosis patients.
Xue-Zong WANG ; Yu LU ; Dao-Fang DING ; Yu-Xin ZHENG ; Yue-Long CAO
China Journal of Orthopaedics and Traumatology 2025;38(4):352-357
OBJECTIVE:
To investigate the characteristics of Vitamin D (VitD) and bone metabolism in patients with knee osteoarthritis (KOA) concurrent with osteoporosis (OP).
METHODS:
A retrospective analysis was performed on 240 patients who were admitted to the orthopedics department between March 2019 and March 2024. Patients were stratified into four distinct groups according to their respective disease categories.There were 90 patients in the simple KOA group, comprising 13 males and 77 females, age ranged from 50 to 91 years old with an average of (68.48±8.96) years old. There were 90 patients in the simple OP group, comprising 7 males and 83 females, age ranged from 52 to 88 years old with an average of (69.60±8.94 )years old. There were 30 patients in the KOA with OP group, comprising 1 male and 29 females, age ranged from 51 to 91 years old with an average of(69.03±7.93) years old. There were 30 patients in the physical examination group, comprising 5 males and 25 females, age ranged from 53 to 79 years old with an average of(64.93±6.51) years old. The general data and the levels of osteocalcin (OC), β-CrossLaps, parathyroid hormone(PTH) and VitD in each group were observed.
RESULTS:
The level of VitD in KOA with OP group (19.62±10.38) ng·ml-1 and OP group (20.65±10.50) ng·ml-1 was lower than that in physical examination group (27.46±8.00) ng·ml-1 and KOA group (24.01±9.11) ng·ml-1 (P<0.05). There were significant differences in β- CrossLaps and PTH levels among the four groups (P<0.001, P=0.019, respectively), while there was no significant difference in OC levels (P=0.763). Compared with the two simple disease groups, the KOA with OP group had higher levels of β - CrossLaps(0.81±0.30) ng·ml-1 (P<0.001). There were significant differences in β-CrossLaps and PTH between the simple KOA group(0.54±0.22) ng·ml-1, (46.03±18.08) pg·ml-1 and the physical examination group (0.44±0.19) ng·ml-1, (36.65±9.63) pg·mL-1(P=0.038;P=0.006). There was a significant difference in PTH between the OP group(43.85±14.30) ng·ml-1, and the physical examination group, P=0.004. There was a significant difference in Kallgren-Lawrence grading between KOA with OP group and KOA group (P=0.006). Within KOA with OP group, the differences of β-CrossLaps and VitD levels among different K-L grades were statistically significant (P=0.016). The level of OC, β-CrossLaps and PTH within KOA with OP group was significantly different at different VitD levels (P=0.013, P=0.033, P=0.046).
CONCLUSION
Patients with KOA complicated by OP exhibit greater disturbances in bone metabolism and reduced VitD levels, particularly reflected by elevated β-CrossLaps. These findings underscore the importance of early monitoring of bone turnover and VitD supplementation in advanced-stage KOA with bone loss.
Humans
;
Female
;
Male
;
Middle Aged
;
Aged
;
Vitamin D/blood*
;
Osteoporosis/complications*
;
Aged, 80 and over
;
Osteoarthritis, Knee/complications*
;
Retrospective Studies
;
Bone and Bones/metabolism*
;
Parathyroid Hormone/metabolism*
;
Osteocalcin/metabolism*
5.Clinical correlation study between bone metabolism level and knee osteoarthritis pain.
Yong-Qi SUN ; Ke-Chun GUO ; Ze-Zhong LIU ; Jin-Shuai DUAN ; Bing XU ; Guo-Gang LUO ; Xian-Liang LAI ; Xiao-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(5):482-486
OBJECTIVE:
To investigate the variability of bone metabolism levels among different populations and its association with knee osteoarthritis (KOA) pain.
METHODS:
A total of 50 people (control group) who participated in physical examination from January 2023 to June 2023 were selected, including 26 males and 24 females, wtih a mean aged of (52.14±9.04) years old ranging 41 to 65 years old. The other 50 patients with knee osteoarthritis(case group) who attended the outpatient clinic of the Orthopedics and Traumatology Department in the same time period, including 19 males and 31 females, with a mean age of (53.60±7.76) years old ranging 40 to 65 years. The two groups of Western Ontario and McMaster Universities Osteoarthritis Index(WOMAC) and bone metabolism markers, such as 25-hydroxy-cholecalciferol[25(OH)D], β-isomerized typeⅠcollagen C-telopeptide breakdown products (β-CTX), total typeⅠprocollagen N-terminal propeptide (t-PINP), osteocalcin (OC), parathormone (PTH) levels were compared. Pearson correlation analysis was used to compare the correlation between two groups of bone metabolism related markers and WOMAC.
RESULTS:
The WOMAC score of the case group (39.90±2.34) was higher than that of the control group (3.60±0.57), with significant difference (P<0.05). There was no significant difference between the two groups of 25 (OH)D, β-CTX and PTH (P>0.05). The t-PINP and OC of the case group were (62.90±52.40) and (19.88±10.15) ng·ml-1, respectively, and those of the control group were (38.86±10.82) and (14.90±3.62) ng·ml-1, respectively;the t-PINP and OC of the case group were higher than those of the control group, with significant difference (P<0.05). Pearson correlation analysis showed that t-PINP was positively correlated with WOMAC pain score in the case group (r2=0.045, P<0.01).
CONCLUSION
Bone metabolism levels in the serum of patients with knee osteoarthritis are different from those of healthy people, and the difference between OC and t-PINP is the most obvious, and the concentration of t-PINP levels is positively correlated with pain symptoms in patients with KOA. However, the specific mechanism of correlation between the bone metabolism levels of patients with KOA and their pain symptoms needs to be further elucidated by basic experimental research as well as by enlarging the samples.
Humans
;
Female
;
Male
;
Middle Aged
;
Osteoarthritis, Knee/metabolism*
;
Aged
;
Adult
;
Bone and Bones/metabolism*
;
Pain/etiology*
;
Biomarkers/metabolism*
6.Research progress on the effect of bone microenvironment on hormonal femoral head necrosis.
Xu-Sheng ZHANG ; Hao-Fei YANG ; Jin-Sheng LI ; Ming-Wang ZHOU ; Hai-Ping LIU ; Xiao-Ping WANG
China Journal of Orthopaedics and Traumatology 2025;38(8):867-872
Steroid-induced osteonecrosis of the femoral head (SONFH) is avascular necrosis of the femoral head caused by long-erm use of corticosteroids, and its pathogenesis is complex and affected by changes in the dynamic balance of the bone microenvironment. With the deepening of research, the role of bone microenvironment in the pathogenesis of SONFH has been gradually revealed. In the case of excessive use of glucocorticoids (GCs), the bone microenvironment changes significantly, causing imbalance in bone lipid metabolism, microcirculation disorders and disorders of immune regulation, which promotes the increase of the number and activity of osteoclasts, and interferes with the differentiation of osteoblasts and adipoblasts. Through the regulation of PI3K/AKT, OPG/RANKL/RANK, MAPK, JAK/STAT, Hedgehog and other signaling pathways, it eventually leads to osteocyte apoptosis, bone microvascular rupture and destruction of trabecular bone structure, which in turn leads to osteonecrosis, bone density reduction and bone microstructure destruction due to bone microcirculation ischemia, and finally leads to necrosis of the femoral head. This article reviews the role of bone microenvironment homeostasis in GCs-induced ONFH and the regulatory mechanism of bone microenvironment, which is helpful to reveal the pathogenesis of SONFH and provide a theoretical basis for exploring effective intervention strategies.
Humans
;
Femur Head Necrosis/physiopathology*
;
Animals
;
Signal Transduction
;
Bone and Bones/metabolism*
;
Glucocorticoids/adverse effects*
;
Cellular Microenvironment
7.Research progresses on the mechanism of macrophages in tendon bone healing.
Liang WANG ; Yinshuan DENG ; Tao QU ; Chaoming DA ; Yunfei HE ; Rui LIU ; Weimin NIU ; Weishun YAN ; Zhen CHEN ; Shuo LI ; Zhiyun YANG ; Binbin GUO ; Xueqian LAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(2):183-187
The connection between tendons and bones is called the tendon bone connection. With the continuous improvement of national sports awareness, excessive exercises and the related intensity are prone to damage the tendon bone connection. Tendon bone healing is a complex repair and healing process involving multiple factors, and good tendon bone healing is a prerequisite for its physiological function. The complexity of tendon bone structure also poses great challenges to the repair of tendon bone injuries. In recent years, researches have found that stem cells, growth factors, macrophages, and other factors are closely related to the healing process of tendon bone injuries, among which macrophages play an important role in the healing process. The authors reviewed relevant research literature in recent years and summarized the role of macrophages in tendon bone healing, in order to provide new ideas and directions for treatment strategies to promote tendon bone healing.
Humans
;
Macrophages/metabolism*
;
Wound Healing
;
Animals
;
Tendons/physiology*
;
Bone and Bones/injuries*
;
Tendon Injuries
8.Correlation between bone mineral density and bone metabolic markers in preschool children and the influencing factors for bone mineral density.
Luopa NI ; Ailipati TAILAITI ; Kereman PAERHATI ; Min-Nan WANG ; Yan GUO ; Zumureti YIMIN ; Gulijianati ABULAKEMU ; Rena MAIMAITI
Chinese Journal of Contemporary Pediatrics 2025;27(8):989-993
OBJECTIVES:
To investigate the correlation between bone mineral density (BMD) and bone metabolic markers in preschool children and the influencing factors for BMD, and to provide a clinical basis for promoting bone health in children.
METHODS:
A retrospective analysis was performed for the data of 127 preschool children who underwent physical examination in the Department of Child Health Care of the First Affiliated Hospital of Xinjiang Medical University, from June to December 2024. BMD and bone metabolic markers were measured, and physical examination was performed. A multiple linear regression analysis was used to investigate the effect of general information on BMD Z-score in preschool children. Spearman's rank correlation test was used to investigate the correlation of BMD Z-score with 25-hydroxyvitamin D (25-OHD), serum bone Gla protein (BGP), and parathyroid hormone (PTH).
RESULTS:
BMD Z-score significantly differed by ethnicity, weight category, and height category (all P<0.05). The multiple linear regression analysis indicated that weight and height significantly influenced BMD Z-score (P<0.05), whereas sex, age, ethnicity, and parental education level did not (P>0.05). In children, BMD Z-score was positively correlated with 25-OHD level (rs=0.260, P<0.001) and BGP level (rs=0.075, P=0.025) and was negatively correlated with PTH level (rs=-0.043, P=0.032).
CONCLUSIONS
Weight, height, 25-OHD, BGP, and PTH are influencing factors for BMD in preschool children. In clinical practice, combined measurement of bone metabolic markers may provide a scientific basis for early identification of children with abnormal BMD and prevention of osteoporosis and osteomalacia.
Humans
;
Bone Density
;
Child, Preschool
;
Female
;
Male
;
Retrospective Studies
;
Vitamin D/blood*
;
Parathyroid Hormone/blood*
;
Biomarkers/blood*
;
Osteocalcin/blood*
;
Bone and Bones/metabolism*
;
Calcium-Binding Proteins/blood*
;
Linear Models
;
Matrix Gla Protein
;
Extracellular Matrix Proteins/blood*
;
Body Weight
;
Infant
9.Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment.
Shihua ZHANG ; Jianmin GUO ; Yuting HE ; Zhi'ang SU ; Yao FENG ; Lan ZHANG ; Zou JUN ; Xiquan WENG ; Yu YUAN
Journal of Zhejiang University. Science. B 2025;26(2):107-123
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
RNA, Long Noncoding/physiology*
;
Osteogenesis/physiology*
;
Humans
;
Neovascularization, Physiologic/genetics*
;
Bone and Bones/metabolism*
;
Animals
;
Mesenchymal Stem Cells
;
Signal Transduction
;
Osteoblasts
;
Osteoclasts
;
Angiogenesis
10.Changes in circulating levels of calcium and bone metabolism biochemical markers in patients receiving denosumab treatment.
Yuancheng CHEN ; Wen WU ; Ling XU ; Haiou DENG ; Ruixue WANG ; Qianwen HUANG ; Liping XUAN ; Xueying CHEN ; Ximei ZHI
Journal of Southern Medical University 2025;45(4):760-764
OBJECTIVES:
To investigate the changes in blood levels of calcium and bone metabolism biochemical markers in patients with primary osteoporosis receiving treatment with denosumab.
METHODS:
Seventy-three patients with primary osteoporosis treated in our Department between December, 2021 and December 2023 were enrolled. All the patients were treated with calcium supplements, vitamin D and calcitriol in addition to regular denosumab treatment every 6 months. Blood calcium, parathyroid hormone (PTH), osteocalcin (OC), type I procollagen amino-terminal propeptide (PINP), and type I collagen carboxy-terminal telopeptide β special sequence (β‑CTX) data before and at 3, 6, 9, and 12 months after the first treatment were collected from each patient.
RESULTS:
Three months after the first denosumab treatment, the bone turnover markers (BTMs) OC, PINP, and β-CTX were significantly decreased compared to their baseline levels by 39.5% (P<0.001), 56.2% (P<0.001), and 81.8% (P<0.001), respectively. At 6, 9, and 12 months of treatment, OC, PINP, and β-CTX remained significantly lower than their baseline levels (P<0.001). Blood calcium level was decreased (P<0.05) and PTH level increased (P<0.05) significantly in these patients at months of denosumab treatment, but their levels were comparable to the baseline levels at 6, 9, and 12 months of the treatment (P>0.05).
CONCLUSIONS
Denosumab can suppress BTMs and has a good therapeutic effect in patients with primary osteoporosis, but reduction of blood calcium and elevation of PTH levels can occur during the first 3 months in spite of calcium supplementation. Blood calcium and PTH levels can recover the baseline levels as the treatment extended, suggesting the importance of monitoring blood calcium and PTH levels during denosumab treatment.
Humans
;
Denosumab/therapeutic use*
;
Calcium/blood*
;
Parathyroid Hormone/blood*
;
Biomarkers/blood*
;
Osteoporosis/blood*
;
Osteocalcin/blood*
;
Procollagen/blood*
;
Female
;
Collagen Type I/blood*
;
Peptide Fragments/blood*
;
Bone Density Conservation Agents/therapeutic use*
;
Bone and Bones/metabolism*
;
Male
;
Middle Aged
;
Vitamin D
;
Peptides/blood*
;
Aged

Result Analysis
Print
Save
E-mail