1.Era value and new directions of traditional Chinese medicine in preventing and treating osteoporosis from perspective of "bone health program".
Yi-Li ZHANG ; Chuan-Rui SUN ; Kai SUN ; Ai-Li XU ; Hao SHEN ; He YIN ; Ling-Hui LI ; Li-Guo ZHU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):569-574
Facing the requirements of promoting the healthy China initiative and improving people's health, the "bone health program" was proposed in 2024. In-depth development of a traditional Chinese medicine(TCM) prevention and control system is of strategic significance to the implementation of the "bone health program". Focusing on osteoporosis(OP), a representative disease affecting people's bone health, this paper concludes that accelerating the research on the prevention and control of OP by TCM is conducive to enhancing the knowledge and awareness of OP among the public, and it is beneficial to revealing the evolutionary pattern of OP and improving the understanding and management of this disease. Additionally, it can provide an overall framework for and strengthen the systematicity and completeness of the research on the prevention and treatment of OP by TCM. Meanwhile, it can help to explore new research paradigms and optimize the existing research model, so as to promote innovative breakthroughs in the prevention and treatment of bone health-related diseases by TCM. Under the overall layout of the "bone health program", importance should be attached to the early prevention and the innovation of very early diagnosis and intervention of OP. Emphasis should be put on the discovery of the target network of disease and treatment mechanism for revealing the core pathogenesis of OP and the therapeutic mechanism of TCM. In addition to local lesions of the bone and its clinical outcomes, attention should be paid to the development of multiple metabolic complications. The fusion of advanced interdisciplinary technologies should be promoted for OP and its complications, and thus a research and development system based on clinical application scenarios and driven by big data can be built. The measures above will facilitate the progress in the prevention and treatment of OP and other bone diseases by TCM and provide new momentum for enriching and deepening the research connotation of the "bone health program".
Osteoporosis/therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal/therapeutic use*
;
China
;
Bone and Bones/drug effects*
2.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
3.Mechanism of Zuogui Pills in regulating bone metabolism through OXT/OXTR feed-forward loop based on theory of "all marrows dominated by brain".
Yan-Chen FENG ; Ya-Li LIU ; Xue DANG ; Lu SUN ; Jin-Yao LI ; Jia-Bin SONG ; Shun-Zhi YANG ; Fei-Xiang LIU
China Journal of Chinese Materia Medica 2025;50(10):2761-2768
Grounded in the theory of "all marrows dominated by brain", this study explored the therapeutic mechanism of Zuogui Pills in modulating the oxytocin(OXT)/oxytocin receptor(OXTR) feed-forward loop in the treatment of postmenopausal osteoporosis(PMOP). A PMOP rat model was established using ovariectomy, and 70 Sprague-Dawley female rats were randomly divided into the following groups: sham operation group, model group, estradiol group(17β-estradiol, 0.05 mg·kg~(-1)·d~(-1)), Zuogui Pills low, medium, and high dose groups(0.2, 0.4, 0.8 g·kg~(-1)·d~(-1), respectively), and an antagonist group(atosiban 0.9 mg·kg~(-1)·d~(-1) + 17β-estradiol 0.05 mg·kg~(-1)·d~(-1) + Zuogui Pills 0.4 g·kg~(-1)·d~(-1)). After 12 weeks of model establishment, treatment was administered by gavage once daily for another 12 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of estrogen(E_2), OXT, tartrate-resistant acid phosphatase(TRACP-5b), and bone alkaline phosphatase(BALP). Histopathological changes in the left distal femur were observed through hematoxylin and eosin(HE) staining. Micro-computed tomography(micro-CT) was used to analyze the microstructure of the right distal femur. Western blot was employed to detect the expression levels of OXTR, small GTP-binding protein Ras, Raf1 proto-oncogene(Raf1), mitogen-activated protein kinase kinase 1/2(MEK1/2), and extracellular signal-regulated kinase 1/2(ERK1/2), and their phosphorylated forms in tibial tissues. Compared with the model group, the Zuogui Pills medium and high dose groups showed significantly increased levels of E_2, OXT, and BALP, with a notable decrease in TRACP-5b levels. Morphologically, the trabeculae in the left distal femur were more tightly arranged. The fibrous structure in the right distal femur was significantly improved in the Zuogui Pills high dose group. Additionally, the expression of OXTR, Ras, p-Raf1, p-MEK1/2, and p-ERK1/2 proteins in tibial tissues was significantly increased. The therapeutic effect of the Zuogui Pills high dose group was partially inhibited when an OXTR antagonist was administered. These findings suggest that Zuogui Pills can regulate the OXT/OXTR feed-forward loop, activate the phosphorylation of the downstream Ras/Raf1/MEK/ERK signaling pathway, and ultimately improve bone mineral density, thereby exerting therapeutic effects in PMOP.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Oxytocin/genetics*
;
Receptors, Oxytocin/genetics*
;
Humans
;
Osteoporosis, Postmenopausal/genetics*
;
Bone and Bones/drug effects*
;
Brain/drug effects*
;
Bone Marrow/drug effects*
4.Applications and prospects of graphene and its derivatives in bone repair.
Zhipo DU ; Yizhan MA ; Cunyang WANG ; Ruihong ZHANG ; Xiaoming LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):106-117
OBJECTIVE:
To summarize the latest research progress of graphene and its derivatives (GDs) in bone repair.
METHODS:
The relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed.
RESULTS:
The application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.
CONCLUSION
GDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.
Graphite/pharmacology*
;
Tissue Engineering/methods*
;
Humans
;
Osteogenesis/drug effects*
;
Biocompatible Materials/pharmacology*
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Cell Differentiation
;
Bone and Bones
;
Bone Substitutes/chemistry*
;
Animals
5.Mechanism of traditional Chinese medicine monomers on regulating bone marrow mesenchymal stem cells to promote tendon-bone healing.
Xiang-Zhe MENG ; Guan-Ming TIAN ; Lei HAN ; Tuo WANG
China Journal of Orthopaedics and Traumatology 2025;38(6):645-650
The healing of the tendon-bone interface is a complex dynamic process involving the interaction of multiple cellular and molecular signaling pathways. Bone mesenchymal stem cells (BMSCs) have the potential to differentiate into various types of cells, including osteoblasts, chondrocytes and adipocytes, etc., and have the potential to regenerate damaged tissues. They are potential seed cells for promoting tendon-bone healing. How to precisely regulate the proliferation and differentiation of BMSCs to accelerate the process of tendon-bone healing is a current research hotspot. Monomers of traditional Chinese medicine can promote tendon-bone healing by regulating signaling pathways such as Wnt/β-catenin and BMP/Smad to induce osteogenic and chondrogenic differentiation of BMSCs. This article reviews from several aspects such as the regulatory role of related signaling pathways on tendine-bone healing, traditional Chinese medicine monomers and their mechanism of regulating BMSCs to promote tendine-bone healing in order to providing new ideas for promoting tendine-bone healing.
Mesenchymal Stem Cells/cytology*
;
Humans
;
Animals
;
Bone Marrow Cells/cytology*
;
Bone and Bones/drug effects*
;
Wound Healing/drug effects*
;
Medicine, Chinese Traditional
;
Tendons/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Signal Transduction/drug effects*
;
Cell Differentiation/drug effects*
6.Strategies for prevention and treatment of spinal degenerative diseases from perspective of traditional Chinese medicine for bone health.
Ling-Hui LI ; Xu WEI ; Li-Guo ZHU ; Yi-Li ZHANG ; Shang-Quan WANG ; Kai SUN ; Bao-Yu QI ; Xiao-Kuan QIN ; Xiao-Yang WANG ; Ming CHEN ; Zhi-Ze LIU
China Journal of Chinese Materia Medica 2024;49(21):5681-5685
The population aging and the coming of the information era are accompanied with the growing incidence of spinal degenerative diseases, which result in heavy social and economic burdens. Under the guidance of the tendon-bone theory, rich experience has been accumulated in the prevention and diagnosis of spinal degenerative diseases with traditional Chinese medicine(TCM), which demonstrates unique advantages. China's government has placed people's health in the strategic position of development, providing a favorable environment for the realization of healthy aging. The Healthy China 2030 advocates special actions for healthy bones. As China is facing an important period of demographic transition, the Traditional Chinese Medicine for Bone Health Program has emerged, combining the needs of the national health strategy and the advantages of TCM. This paper discusses the background and significance of the program. According to the theory of five body constituents and the characteristics of musculoskeletal system diseases, this paper constructs a theoretical system of "tendon-meridian-muscle-bone-marrow" to explain the structure and function of the musculoskeletal system. From the holistic view of TCM, this system shows not only the structure and function of the musculoskeletal system but also the patterns of disease development and the mechanism of TCM treatment. The system facilitates the research on not only the comorbidities related to bone health but also the occurrence, development, and outcome of diseases. In the management of chronic degenerative diseases, attention should be paid to the establishment and improvement of the disease prevention and control system in addition to the disease treatment alone. Finally, this paper introduces the characteristic advantages of TCM in the whole process of prevention, diagnosis, treatment, rehabilitation, and health maintenance of spinal degenerative diseases, aiming to enrich the connotation of the tendon-bone theory, provide ideas and implementation strategies for TCM clinical practice, and ultimately achieve the effective management of the diagnosis and treatment of spinal degenerative diseases.
Humans
;
Medicine, Chinese Traditional
;
Spinal Diseases/prevention & control*
;
Drugs, Chinese Herbal/therapeutic use*
;
China
;
Bone and Bones/drug effects*
7.Prolonged continuous infusion of teriparatide promotes bone metabolism in normal but not in castrated mice.
Minghan LI ; Youhua HE ; Guojun TONG ; Dehong YANG
Journal of Southern Medical University 2019;39(9):1045-1051
OBJECTIVE:
To investigate the effects of continuous pumping of teriparatide (TPTD) on bone metabolism in ovariectomized and normal mice and provide experimental evidence for the selection of animal models for studying the effects of TPTD and its related peptides on osteoclasts.
METHODS:
Twenty-four female C57BL mice (6-weeks old) were subjected to ovariectomy (OVX) or sham operation followed 7 days later by continuous pumping of TPTD or the solvent vehicle (VEH) a micropump (SHAM-VEH, SHAM-TPTD, OVX-VEH, and OVX-TPTD groups; =6). Two weeks later, the tibial and femoral bones were harvested for micro-CT scanning to measure the parameters of the tibia and the femoral cortical bone. Histopathological examinations of the tibial tissue were conducted using HE staining and TRAP staining and the number of osteoclasts and the growth plate thickness were determined. The serum Ca2 + levels of the mice were measured. The primary osteoblasts from the cranial bone were treated with estradiol (E2) and TPTD for 48 h, and the expressions of β-catenin and RANKL protein in the cells were analyzed.
RESULTS:
The trabecular bone mass of OVX mice was significantly lower than that of sham-operated mice ( < 0.05). Continuous TPTD pumping significantly reduced tibial cancellous bone mass and femoral cortical bone area in the sham-operated mice, while in the castrated mice, TPTD pumping increased the cancellous bone mass without changing the cortical bone area. TRAP staining showed that cancellous osteoblasts in the tibia increased significantly in the castrated mice as compared with the sham-operated mice, and TPTD pumping significantly increased the number of cancellous osteoblasts in the sham-operated mice ( < 0.05). In the primary cultured osteoblasts, treatment with both E2 and TPTD obviously lowered the expression of β-catenin and increased the expression of RANKL as compared with TPTD treatment alone.
CONCLUSIONS
Continuous pumping of TPTD promotes bone resorption in normal mice but does not produce obvious bone resorption effect in the ovariectomized mice, suggesting that castrated mice are not suitable models for studying the effect of TPTD and the related peptides on the osteoclasts.
Animals
;
Bone Density
;
Bone Density Conservation Agents
;
administration & dosage
;
pharmacology
;
Bone Resorption
;
drug therapy
;
Bone and Bones
;
drug effects
;
metabolism
;
Female
;
Growth Plate
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Osteoclasts
;
drug effects
;
Ovariectomy
;
RANK Ligand
;
metabolism
;
Teriparatide
;
administration & dosage
;
pharmacology
;
beta Catenin
;
metabolism
9.Bone metabolism disorders caused by sodium valproate therapy in children with epilepsy and the prevention of the disorders by supplementation of calcium and vitamin D.
Ying-Wu LIANG ; Qing FENG ; Yan-Li ZHANG ; Wen-Jun WANG
Chinese Journal of Contemporary Pediatrics 2017;19(9):962-964
Adolescent
;
Anticonvulsants
;
adverse effects
;
Bone and Bones
;
drug effects
;
metabolism
;
Calcium
;
blood
;
Calcium, Dietary
;
administration & dosage
;
Child
;
Child, Preschool
;
Dietary Supplements
;
Epilepsy
;
drug therapy
;
metabolism
;
Female
;
Humans
;
Male
;
Valproic Acid
;
adverse effects
;
Vitamin D
;
administration & dosage
10.Seropharmacological study on osteogenic effects of post-absorption ingredients of an osteoprotective herbal formula.
Wing-Sum SIU ; Chun-Hay KO ; Hing-Lok WONG ; Si GAO ; Wai-Ting SHUM ; Clara Bik-San LAU ; Lung-Kim HUNG ; Ping-Chung LEUNG
Chinese journal of integrative medicine 2017;23(1):25-32
OBJECTIVETo further investigate the {ptin vitro} effects of an osteoprotective herbal formula "ELP" (Herba Epimedii, Fructus Ligustri Lucidi and Fructus Psoraleae) using seropharmacological approach.
METHODSRats were fed with ELP or its individual component herbs for 2 days. The serum containing the postabsorbed ingredients of the herbal items were collected for cell culture using UMR106 cell, RAW264.7 cell and mesenchymal stem cell (MSC) isolated from the bone marrow of the rats. The effects of the herbal-containing serum on cell toxicity were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay; bromodeoxyuridine assay was conducted to measure the cell proliferation of UMR106 cell and MSC; cell activity was measured using colorimetric method, and mRNA expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteopontin (OPN) of UMR106 and MSC as well as matrix metalloproteinase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) and cathepsin K of RAW264.7 were analyzed using real-time reverse-transcription polymerase chain reaction.
RESULTSELP and its component serum exhibited no cytotoxic effects on the cells. The ELP-containing serum increased the proliferation of UMR106 cell and MSC by 25.7% and 14.4 %, respectively and the alkaline phosphatase activity of MSC was increased by 42.6%. On the contrary, it inhibited the RAW264.7 cell differentiation by 29.2 %. ELP serum upregulated the Runx2 expression of UMR and MSC by 1.18 fold and 1.27 fold, respectively. It also upregulated ALP and OPN expression in MSC by 1.69- and 2.12-fold, respectively. On the other hand, ELP serum down-regulated MMP-9 and cathepsin K expression of RAW264.7 cell by 0.46- and 0.36-fold, respectively.
CONCLUSIONSThe serum of the animals fed with ELP contains active ingredients which are effective in promoting osteogenesis and inhibiting osteoclastogenesis.
Absorption, Physiological ; drug effects ; Animals ; Bone and Bones ; drug effects ; pathology ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Male ; Mice ; Osteoclasts ; drug effects ; metabolism ; pathology ; Osteogenesis ; drug effects ; Protective Agents ; pharmacology ; RAW 264.7 Cells ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Serum ; metabolism

Result Analysis
Print
Save
E-mail