1.Applications and prospects of graphene and its derivatives in bone repair.
Zhipo DU ; Yizhan MA ; Cunyang WANG ; Ruihong ZHANG ; Xiaoming LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):106-117
OBJECTIVE:
To summarize the latest research progress of graphene and its derivatives (GDs) in bone repair.
METHODS:
The relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed.
RESULTS:
The application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.
CONCLUSION
GDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.
Graphite/pharmacology*
;
Tissue Engineering/methods*
;
Humans
;
Osteogenesis/drug effects*
;
Biocompatible Materials/pharmacology*
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Cell Differentiation
;
Bone and Bones
;
Bone Substitutes/chemistry*
;
Animals
2.Research progress on strontium modified β-tricalcium phosphate composite biomaterials with immune regulatory properties.
Huanxi LI ; Xingyu SHAN ; Hongda WANG ; Zhimin TIAN ; Chunnuo HE ; Haoqiang ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):511-517
OBJECTIVE:
To review the research progress of strontium (Sr) modified β-tricalcium phosphate composite biomaterials (SrTCP) promoting osteogenesis through immune regulation, and provides reference and theoretical support for the further development and research of SrTCP bone repair materials in bone tissue engineering in the future.
METHODS:
The literature about SrTCP promoting osteogenesis through immune regulation at home and abroad in recent years was extensively reviewed, and the preparation methods, immune mechanism and application of promoting osteogenesis were summarized and analyzed.
RESULTS:
The preparation methods of SrTCP include solid-state reaction sintering method, solution combustion quenching method, direct doping method, ion substitution method, etc. SrTCP has immune regulatory effects, which can play an immune regulatory role in inducing macrophage polarization, inducing angiogenesis and anti oxidative stress to promote osteogenesis.
CONCLUSION
At present, studies have shown that SrTCP can promote bone defect repair through immune regulation. Subsequent studies can start from the control of the optimal repair concentration and release rate of Sr, and further clarify the specific mechanism of SrTCP in promoting angiogenesis and anti oxidative stress, which is helpful to develop new materials for bone defect repair.
Calcium Phosphates/pharmacology*
;
Strontium/pharmacology*
;
Biocompatible Materials/pharmacology*
;
Humans
;
Osteogenesis/drug effects*
;
Tissue Engineering/methods*
;
Bone Substitutes/pharmacology*
;
Bone Regeneration/drug effects*
;
Animals
;
Tissue Scaffolds/chemistry*
;
Neovascularization, Physiologic/drug effects*
;
Macrophages/immunology*
3.Research progress in three-dimensional-printed bone scaffolds combined with vascularized tissue flaps for segmental bone defect reconstruction.
Qida DUAN ; Hongyun SHAO ; Ning LUO ; Fuyang WANG ; Liangliang CHENG ; Jiawei YING ; Dewei ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):639-646
OBJECTIVE:
To review and summarize the research progress on repairing segmental bone defects using three-dimensional (3D)-printed bone scaffolds combined with vascularized tissue flaps in recent years.
METHODS:
Relevant literature was reviewed to summarize the application of 3D printing technology in artificial bone scaffolds made from different biomaterials, as well as methods for repairing segmental bone defects by combining these scaffolds with various vascularized tissue flaps.
RESULTS:
The combination of 3D-printed artificial bone scaffolds with different vascularized tissue flaps has provided new strategies for repairing segmental bone defects. 3D-printed artificial bone scaffolds include 3D-printed polymer scaffolds, bio-ceramic scaffolds, and metal scaffolds. When these scaffolds of different materials are combined with vascularized tissue flaps ( e.g., omental flaps, fascial flaps, periosteal flaps, muscular flaps, and bone flaps), they provide blood supply to the inorganic artificial bone scaffolds. After implantation into the defect site, the scaffolds not only achieve structural filling and mechanical support for the bone defect area, but also promote osteogenesis and vascular regeneration. Additionally, the mechanical properties, porous structure, and biocompatibility of the 3D-printed scaffold materials are key factors influencing their osteogenic efficiency. Furthermore, loading the scaffolds with active components such as osteogenic cells and growth factors can synergistically enhance bone defect healing and vascularization processes.
CONCLUSION
The repair of segmental bone defects using 3D-printed artificial bone scaffolds combined with vascularized tissue flap transplantation integrates material science technologies with surgical therapeutic approaches, which will significantly improve the clinical treatment outcomes of segmental bone defect repair.
Printing, Three-Dimensional
;
Tissue Scaffolds
;
Humans
;
Surgical Flaps/blood supply*
;
Tissue Engineering/methods*
;
Plastic Surgery Procedures/methods*
;
Bone and Bones/surgery*
;
Biocompatible Materials
;
Bone Regeneration
;
Bone Transplantation/methods*
;
Bone Substitutes
;
Osteogenesis
4.Treatment of large bone defects in load-bearing bone: traditional and novel bone grafts.
Dan YU ; Wenyi SHEN ; Jiahui DAI ; Huiyong ZHU
Journal of Zhejiang University. Science. B 2025;26(5):421-447
Large bone defects in load-bearing bone can result from tumor resection, osteomyelitis, trauma, and other factors. Although bone has the intrinsic potential to self-repair and regenerate, the repair of large bone defects which exceed a certain critical size remains a substantial clinical challenge. Traditionally, repair methods involve using autologous or allogeneic bone tissue to replace the lost bone tissue at defect sites, and autogenous bone grafting remains the "gold standard" treatment. However, the application of traditional bone grafts is limited by drawbacks such as the quantity of extractable bone, donor-site morbidities, and the risk of rejection. In recent years, the clinical demand for alternatives to traditional bone grafts has promoted the development of novel bone-grafting substitutes. In addition to osteoconductivity and osteoinductivity, optimal mechanical properties have recently been the focus of efforts to improve the treatment success of novel bone-grafting alternatives in load-bearing bone defects, but most biomaterial synthetic scaffolds cannot provide sufficient mechanical strength. A fundamental challenge is to find an appropriate balance between mechanical and tissue-regeneration requirements. In this review, the use of traditional bone grafts in load-bearing bone defects, as well as their advantages and disadvantages, is summarized and reviewed. Furthermore, we highlight recent development strategies for novel bone grafts appropriate for load-bearing bone defects based on substance, structural, and functional bionics to provide ideas and directions for future research.
Humans
;
Bone Transplantation/methods*
;
Weight-Bearing
;
Bone Regeneration
;
Bone Substitutes
;
Bone and Bones
;
Animals
;
Tissue Scaffolds
5.Expert consensus on clinical randomized controlled trial design and evaluation methods for bone grafting or substitute materials in alveolar bone defects.
Xiaoyu LIAO ; Yang XUE ; Xueni ZHENG ; Enbo WANG ; Jian PAN ; Duohong ZOU ; Jihong ZHAO ; Bing HAN ; Changkui LIU ; Hong HUA ; Xinhua LIANG ; Shuhuan SHANG ; Wenmei WANG ; Shuibing LIU ; Hu WANG ; Pei WANG ; Bin FENG ; Jia JU ; Linlin ZHANG ; Kaijin HU
West China Journal of Stomatology 2025;43(5):613-619
Bone grafting is a primary method for treating bone defects. Among various graft materials, xenogeneic bone substitutes are widely used in clinical practice due to their abundant sources, convenient processing and storage, and avoidance of secondary surgeries. With the advancement of domestic production and the limitations of imported products, an increasing number of bone filling or grafting substitute materials isentering clinical trials. Relevant experts have drafted this consensus to enhance the management of medical device clinical trials, protect the rights of participants, and ensure the scientific and effective execution of trials. It summarizes clinical experience in aspects, such as design principles, participant inclusion/exclusion criteria, observation periods, efficacy evaluation metrics, safety assessment indicators, and quality control, to provide guidance for professionals in the field.
Humans
;
Bone Substitutes/therapeutic use*
;
Randomized Controlled Trials as Topic/methods*
;
Consensus
;
Bone Transplantation
;
Research Design
6.Evaluation of the clinical effect of concentrated growth factor combined with sticky bone in maxillary anterior alveolar ridge preservation.
Xueqin WEI ; Shengzhi ZHANG ; Kai BA
West China Journal of Stomatology 2025;43(5):671-678
OBJECTIVES:
To compare the clinical effects of concentrated growth factor (CGF) membrane and Bio-Gide ® collagen membrane, combined with Bio-Oss ® sticky bone respectively in alveolar ridge preservation (ARP) of maxillary anterior teeth.
METHODS:
Thirty patients who needed alveolar ridge preservation after maxillary anterior tooth extraction were selected and randomly assigned to the Bio-Gide group and the CGF group. In both groups, the extraction sockets were tightly filled with the Bio-Oss® sticky bone. In the Bio-Gide group used Bio-Gide® collagen membrane to cover the upper edge of the Bio-Oss® sticky bone and closed the wound. The CGF group, the CGF membrane was covered on the upper edge of the Bio-Oss® sticky bone and the wound was closed. The soft tissue wound healing status at 10 days after ARP, the changes in alveolar ridge height and width immediately after ARP and at 6 months after ARP, and the doctor-patient satisfaction at 6 months after ARP were compared and evaluated between the two groups.
RESULTS:
At 6 months after ARP, there was no statistically significant difference in the changes of alveolar bone width and height between the two groups (P>0.05). However, the CGF group showed better performance in soft tissue healing after ARP and doctor-patient satisfaction, and the differences were statistically significant (P<0.05).
CONCLUSIONS
Compared with the Bio-Gide® collagen membrane, the combined application of CGF membrane and Bio-Oss® sticky bone can lead to better soft tissue healing after ARP of maxillary anterior teeth and higher doctor-patient satisfaction, showing obvious advantages in ARP of maxillary anterior teeth.
Humans
;
Maxilla/surgery*
;
Tooth Extraction
;
Alveolar Process/surgery*
;
Membranes, Artificial
;
Alveolar Ridge Augmentation/methods*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Minerals/therapeutic use*
;
Collagen
;
Wound Healing
;
Tooth Socket/surgery*
;
Bone Substitutes/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Alveolar Bone Loss/prevention & control*
;
Adult
7.Preparation of decellularized bone graft material with supercritical carbon dioxide extraction technique.
Feng HAO ; Kaifeng PAN ; Liuyun HUANG ; Xuhong CHEN ; Haikun WEI ; Xianhua CHEN ; Jianfeng ZHANG
Journal of Zhejiang University. Medical sciences 2024;53(6):772-778
OBJECTIVES:
To evaluate the immunogenicity and osteogenic ability of animal-derived bone graft material decellularized with supercritical carbon dioxide.
METHODS:
Porcine femurs were randomly divided into two groups after preliminary treatment, and decellularized with conventional method (control group) or supercritical carbon dioxide (experimental group). Allogenic demineralized bone matrix was used as positive control. Clearance rate of galactose-α-1, 3-galactose (α-Gal) antigen was determined by enzyme-linked immunosorbent assay and residual DNA was detected by a fluorescence method. Nine SPF-grade male athymic nude mice of 6 weeks old were randomly divided into experimental, control and positive control groups. Samples were implanted over biceps femoris muscle of athymic nude mice. The explants were collected 4 weeks post implantation. Hematoxylin and eosin (HE) staining and immunohistochemistry were applied to determine the osteogenic ability and bone tissue-associated protein expressions of the implants.
RESULTS:
The clearance rates of α-Gal antigen in the experimental group and the control group were (99.09±0.26)% and (30.18±2.02)%, respectively (t=58.67, P<0.01). The residual DNA of the experimental, control and positive control groups were (13.49±0.07), (15.20±0.21) and (14.70±0.17) ng/mg. The residual DNA in the experimental group was significantly lower than that in the control group (t=-13.41, P<0.01) and positive control group (t=-11.30, P<0.01). HE staining results showed that multiple bone formation centers with active osteogenesis and rich bone marrow were observed in experimental group 4 weeks after implantation, but only a small number of bone formation centers were observed in the control and positive control groups, with no obvious osteoblasts present. Immunohistochemistry results indicated that the expressions of alkaline phosphatase, Runt-related transcription factor 2, collagen typeⅠand osteocalcin in the experimental group showed an increasing trend compared with those in the control and positive control groups.
CONCLUSIONS
Compared with clinically used allogenic demineralized bone matrix and bone graft material decellularized with conventional method, bone graft material decellularized with supercritical carbon dioxide exhibits lower immunogenicity and better osteogenic ability.
Animals
;
Mice
;
Swine
;
Male
;
Bone Transplantation/methods*
;
Mice, Nude
;
Carbon Dioxide
;
Osteogenesis/drug effects*
;
Femur
;
Bone Substitutes
;
Tissue Engineering/methods*
8.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
9.Research progress on bone defect repair materials.
Guo-Ding CAO ; Yu-Qi PEI ; Jun LIU ; Peng LI ; Peng LIU ; Xu-Sheng LI
China Journal of Orthopaedics and Traumatology 2021;34(4):382-388
In the process of repairing of bone defects, bone scaffold materials need to be implanted to restore the corresponding tissue structure at the injury. At present, the repair materials used for bone defects mainly include autogenous bone, allogeneic bone, metal materials, bioceramics, polymer materials and various composite materials. Different materials have demonstrated strong reconstruction ability in bone repair, but the ideal bone implants in the clinic are still yet to be established. Except for autogenous bone, other materials used in bone defect repair are unable to perfectly balance biocompatibility, bone formation, bone conduction and osteoinduction. Combining the latest advances in materials sciences and clinical application, we believe that composite materials supplementedwith Chinese medicine, tissue cells, cytokines, trace elements, etc. and manufactured using advanced technologies such as additive manufacturing technology may have ideal bone repair performance, and may have profound significance in clinical repair of bone defects of special type. This article reviewed to the domestic and foreign literature in recent years, and elaborates the current status of bone defect repair materials in clinical application and basic research in regard to the advantages, clinical options, shortcomings, and how to improve the autogenous bone, allogeneic bone and artificial bone materials, in order to provide a theoretical basis for clinical management of bone defects.
Acrylic Resins
;
Biocompatible Materials
;
Bone Substitutes
;
Bone and Bones
;
Osteogenesis
;
Tissue Engineering
;
Tissue Scaffolds
10.Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs.
Si Wen WANG ; Peng Yue YOU ; Yu Hua LIU ; Xin Zhi WANG ; Lin TANG ; Mei WANG
Journal of Peking University(Health Sciences) 2021;53(2):364-370
OBJECTIVE:
To evaluate the effect of two barrier membranes [multilaminated small intestinal submucosa (mSIS) and bioresorable collagen membrane (Bio-Gide)] combined with deproteinized bovine bone mineral Bio-Oss on guided bone regeneration through a canine extraction sockets model.
METHODS:
The distal roots of 18 premolars of the Beagle' s bilateral maxillary and mandibular were removed, and 18 extraction sockets were obtained. They were randomly divided into 3 groups, and the following procedures were performed on the sockets: (1) filled with Bio-Oss and covered by mSIS (mSIS group), (2) filled with Bio-Oss and covered by Bio-Gide (BG group), (3) natural healing (blank control group). Micro-computed tomograph (Micro-CT) was performed 4 and 12 weeks after surgery to eva-luate the new bone regeneration in the sockets of each group.
RESULTS:
The postoperative healing was uneventful in all the animals, and no complications were observed through the whole study period. Micro-CT analysis showed that the new bone fraction in the mSIS group and the BG group was significantly higher than that in the blank control group at the end of 4 weeks and 12 weeks (P < 0.05), and more new bone fraction was observed in the mSIS group than in the BG group, but the difference was not statistically significant (P>0.05). The new bone fraction of coronal third part of the socket in the mSIS group and BG group at the end of 4 weeks were significantly higher than that of the middle and apical third part of each group (P < 0.05). The values of bone mineral density were similar at 4 weeks in all the groups (P>0.05), but were significantly higher than that in the control group at the end of 12 weeks (P < 0.05). The bone morphometric analysis showed that the trabecular number and trabecular spacing were significantly better in the mSIS group and the BG group than in the control group at the end of 4 weeks and 12 weeks (P < 0.05), while the value in the mSIS group was slightly higher than in the BG group, but the difference was not statistically significant (P>0.05). The difference in trabecular thickness between all the groups was not statistically significant (P>0.05).
CONCLUSION
mSIS membrane as a barrier membrane combined with deproteinized bovine bone mineral can enhance new bone formation in canine extraction sockets, similar to Bio-Gide collagen membrane.
Animals
;
Bone Regeneration
;
Bone Substitutes
;
Cattle
;
Dogs
;
Membranes, Artificial
;
Minerals
;
Tooth Extraction
;
Tooth Socket/surgery*
;
X-Ray Microtomography

Result Analysis
Print
Save
E-mail