1.Applications and prospects of graphene and its derivatives in bone repair.
Zhipo DU ; Yizhan MA ; Cunyang WANG ; Ruihong ZHANG ; Xiaoming LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):106-117
OBJECTIVE:
To summarize the latest research progress of graphene and its derivatives (GDs) in bone repair.
METHODS:
The relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed.
RESULTS:
The application of GDs in bone repair materials has broad prospects, and the functionalization and modification technology effectively improve the osteogenic activity and material properties of GDs. GDs can induce osteogenic differentiation of stem cells through specific signaling pathways and promote osteogenic activity through immunomodulatory mechanisms. In addition, the parameters of GDs have significant effects on the cytotoxicity and degradation behavior.
CONCLUSION
GDs has great potential in the field of bone repair because of its excellent physical and chemical properties and biological properties. However, the cytotoxicity, biodegradability, and functionalization strategies of GDs still need to be further studied in order to achieve a wider application in the field of bone tissue engineering.
Graphite/pharmacology*
;
Tissue Engineering/methods*
;
Humans
;
Osteogenesis/drug effects*
;
Biocompatible Materials/pharmacology*
;
Bone Regeneration
;
Tissue Scaffolds/chemistry*
;
Cell Differentiation
;
Bone and Bones
;
Bone Substitutes/chemistry*
;
Animals
2.Research progress on strontium modified β-tricalcium phosphate composite biomaterials with immune regulatory properties.
Huanxi LI ; Xingyu SHAN ; Hongda WANG ; Zhimin TIAN ; Chunnuo HE ; Haoqiang ZHANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(4):511-517
OBJECTIVE:
To review the research progress of strontium (Sr) modified β-tricalcium phosphate composite biomaterials (SrTCP) promoting osteogenesis through immune regulation, and provides reference and theoretical support for the further development and research of SrTCP bone repair materials in bone tissue engineering in the future.
METHODS:
The literature about SrTCP promoting osteogenesis through immune regulation at home and abroad in recent years was extensively reviewed, and the preparation methods, immune mechanism and application of promoting osteogenesis were summarized and analyzed.
RESULTS:
The preparation methods of SrTCP include solid-state reaction sintering method, solution combustion quenching method, direct doping method, ion substitution method, etc. SrTCP has immune regulatory effects, which can play an immune regulatory role in inducing macrophage polarization, inducing angiogenesis and anti oxidative stress to promote osteogenesis.
CONCLUSION
At present, studies have shown that SrTCP can promote bone defect repair through immune regulation. Subsequent studies can start from the control of the optimal repair concentration and release rate of Sr, and further clarify the specific mechanism of SrTCP in promoting angiogenesis and anti oxidative stress, which is helpful to develop new materials for bone defect repair.
Calcium Phosphates/pharmacology*
;
Strontium/pharmacology*
;
Biocompatible Materials/pharmacology*
;
Humans
;
Osteogenesis/drug effects*
;
Tissue Engineering/methods*
;
Bone Substitutes/pharmacology*
;
Bone Regeneration/drug effects*
;
Animals
;
Tissue Scaffolds/chemistry*
;
Neovascularization, Physiologic/drug effects*
;
Macrophages/immunology*
3.Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation.
Ji Beom KIM ; Dong Yeon LEE ; Sang Gyo SEO ; Eo Jin KIM ; Ji Hye KIM ; Won Joon YOO ; Tae Joon CHO ; In Ho CHOI
Clinics in Orthopedic Surgery 2015;7(3):383-391
BACKGROUND: Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. METHODS: The immature rabbit tibial DO model (20 mm length-gain) was used. Twenty-eight animals received DBM 100 mg percutaneously at the end of distraction. Another 22 animals were left without further procedure (control). Plain radiographs were taken every week. Postmortem bone dual-energy X-ray absorptiometry and micro-computed tomography (micro-CT) studies were performed at the third and sixth weeks of the consolidation period and histological analysis was performed. RESULTS: The regenerate bone mineral density was higher in the DBM group when compared with that in the saline injection control group at the third week postdistraction. Quantitative analysis using micro-CT revealed larger trabecular bone volume, higher trabecular number, and less trabecular separation in the DBM group than in the saline injection control group. Cross-sectional area and cortical thickness at the sixth week postdistraction, assessed using micro-CT, were greater in the regenerates of the DBM group compared with the control group. Histological evaluation revealed higher trabecular bone volume and trabecular number in the regenerate of the DBM group. New bone formation was apparently enhanced, via endochondral ossification, at the site and in the vicinity of the injected DBM. DBM was absorbed slowly, but it remained until the sixth postoperative week after injection. CONCLUSIONS: DBM administration into the distraction gap at the end of the distraction period resulted in a significantly greater regenerate bone area, trabecular number, and cortical thickness in the rabbit tibial DO model. These data suggest that percutaneous DBM administration at the end of the distraction period or in the early consolidation period may stimulate regenerate bone formation and consolidation in a clinical situation with delayed bone healing during DO.
Animals
;
Bone Regeneration/*drug effects
;
Bone Substitutes/*administration & dosage/*pharmacology
;
Disease Models, Animal
;
Humans
;
Injections
;
Male
;
Osteogenesis, Distraction/*methods
;
Rabbits
;
Tibia/radiography/surgery
4.Growth activity of osteoblast on a novel strontium incorporated calcium sulfate.
Chun-Li ZHANG ; Yan-Tao ZHAO ; Shu-Xun HOU ; Hong-Bin ZHONG ; Zhong-Hai LI ; Yan LIU ; Ying ZHOU
China Journal of Orthopaedics and Traumatology 2014;27(5):415-418
OBJECTIVETo investigate the growth activity of osteoblast on a novel strontium incorporated calcium sulfate and make comparison with normal calcium sulfate material.
METHODSOsteoblast was inoculated on samples and cell proliferation was measured on the 1st, 3rd, 5th days, and the activities of ALP and osteocalcin were observed on the 5th day. And microcosmic morphology of osteoblast was observed by scanning electron microscopy(SEM).
RESULTSOsteoblast grows robustly on tested material. Cell quantity on the surface of novel material was obviously higher than normal calcium sulfate material (P < 0.05). The activity of ALP and osteocalcin on novel material was 57.8% and 40.2% higher than on normal calcium sulfate material respectively (P < 0.05). On strontium incorporated surface, osteoblast spread well. Cells were polygonal with abundant cytoplasm and the morphology was active.
CONCLUSIONStrontium incorporated calcium sulfate can sustain robust growth activity of osteoblast, which is promising to be used for bone substitute materials.
3T3 Cells ; Alkaline Phosphatase ; metabolism ; Animals ; Bone Substitutes ; chemistry ; pharmacology ; Calcium Sulfate ; chemistry ; pharmacology ; Cell Proliferation ; drug effects ; Mice ; Osteoblasts ; cytology ; drug effects ; metabolism ; Osteocalcin ; metabolism ; Strontium ; chemistry
5.Determination of silver content in silver-loaded coral hydroxyapatite in relation to the biocompatibility.
Yu ZHANG ; Qing-shui YIN ; Yu ZHANG ; Jian LI ; Xu-qiong CHEN ; Dong FU
Journal of Southern Medical University 2011;31(8):1411-1415
OBJECTIVETo determine the amount of silver in silver-loaded coral hydroxyapatite (Ag(+)-CHA) bone substitute and its impact on the biocompatibility of this material with mouse embryonic osteoblast cells.
METHODSAg(+)-CHA was prepared by immersing coral hydroxyapatite in a serial concentration of silver nitrate solutions. The amount of silver in the prepared Ag(+)-CHA was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). The viability of MC3T3-E1 cells incubated with Ag(+)-CHA was measured by MTT colorimetric assay, and the cell growth and morphological changes were observed by inverted phase-contrast microscope and confocal laser scanning microscope.
RESULTSThe amount of silver loading in the bone substitutes prepared by immersion in 1×10(-2), 1×10(-3), 5×10(-4), 10(-4), 8×10(-5), and 5×10(-5) mol/L silver nitrate solutions were 4127.67∓47.35, 167.90∓11.00, 83.42∓4.51, 30.20∓2.32, 22.39∓4.09, and 15.11∓0.55 µg/g, respectively. A low silver content in the material (prepared with silver nitrate solution of less than 8×10(-5) mol/L) showed no significant inhibitory effect on the growth of MC3T3-E1 cells or produced noticeable cytotoxic effect. On the materials prepared with 8×10(-5) and 10(-5) mol/L silver nitrate solution, the osteoblasts displayed active proliferation similar to those incubated on materials without silver loading. The confluent cells showed a normal fusiform morphology with tight arrangement.
CONCLUSIONAg(+)-CHA with low silver content has a good biocompability and can promote the proliferation and growth of MC3T3-E1 cells in vitro, suggesting the clinical potential of this material as a anti-infection bone substitute.
3T3 Cells ; Animals ; Anthozoa ; chemistry ; Anti-Bacterial Agents ; analysis ; pharmacology ; Biocompatible Materials ; chemistry ; pharmacology ; Bone Substitutes ; chemistry ; pharmacology ; Cells, Cultured ; Durapatite ; chemistry ; pharmacology ; Materials Testing ; Mice ; Silver ; analysis ; chemistry ; pharmacology
6.Preparation and ectopic osteoinduction study of macroporous bone substitute with calcium phosphate cements and rhBMP-2 loaded gelatin microspheres.
Meng LI ; Xu-dong LIU ; Xing-yan LIU ; Bao-feng GE
China Journal of Orthopaedics and Traumatology 2011;24(5):411-415
OBJECTIVETo prepare macroporous bone substitute composed of calcium phosphate cements and rhBMP-2 loaded gelatin microspheres, and to investigate ectopic osteoinduction of the composite.
METHODSAfter being prepared by improved emulsified cold-condensation method and crosslinked by 5% genipin solution,gelatin microspheres (GMs) were observed by scanning electron microscope (SEM) and loaded with rhBMP-2 by adsorption. Macroporous bone substitute was developed by mixing calcium phosphate cement (CPC) with 2.5% GMs, being as the experimental group,and CPC with rhBMP-2 was the control group. After the both composites had been soaked in the sodium chloride for 1 week or 3 weeks, compressive strength of the composites were tested, and the cross-sections were observed by SEM. Concentrations of rhBMP-2 in the solutions at different time by ELISA method and the cumulative drug release amount was calculated. The composites had been implanted in the muscle bags of the mouses for 3 weeks. Then the tissues around the materials were collected, stained by hematoxylin and eosin, and Ca and ALP in the tissues were also measured.
RESULTSGelatin microspheres were spherical with diameters of (62 +/- 18) microm. Macropores appeared in the experimental materials 1 week and 3 weeks after being soaked,and total porosity, macroporosity, cumulative release amount of rhBMP-2 in the experimental group were higher than that in the control. But compressive strength of the experimental group was lower than that of the control group 3 weeks after being soaked. Results of HE stain showed chondral formation in both groups, but there were more chondral tissues in the experiment group, and so were the concentrations of Ca and ALP.
CONCLUSIONMacroporous calcium phosphate cement can be prepared by using rhBMP-2 loaded gelatin microspheres, and it is an excellent bone substitute due to it's proterty of promoting rhBMP release and powerful ectopic osteoinduction.
Animals ; Bone Cements ; chemistry ; Bone Morphogenetic Protein 2 ; chemistry ; Bone Substitutes ; chemistry ; pharmacology ; Calcium Phosphates ; chemistry ; Gelatin ; chemistry ; Humans ; Male ; Mice ; Microspheres ; Osteogenesis ; drug effects ; Porosity ; Recombinant Proteins ; chemistry
7.Preparation of chitosan/hydroxyapatite membrane and its effect on cell culture.
Julin YANG ; Changren ZHOU ; Ye TIAN ; Jinhuan TIAN
Journal of Biomedical Engineering 2009;26(3):580-584
Compound membranes of chitosan/hydroxyapatite were prepared by blending. The physical performance showed that the air-water contact angles decreased from chitosan's 103 degrees to chitosan/hydroxyapatite's 57 and the water adsorption rate increased slightly. When immersed into culture medium, the materials adsorbed Ca2+, and low crystalline hydroxyapatite deposited on the surface of the membranes. Chitosan/hydroxyapatite compound membranes could enhance the attachment and proliferation of mescenchymal stem cells (MSCs). After 12 days' induction on the materials, the alkaline phosphatase (ALP) activity value of MSCs on the compound membrane was 10.1, being much higher than 1.6 on chitosan membrane (P<0.01). All these results indicate that chitosan does not have very good affinity for MSCs, but the biocompatibility of chitosan can be apparently enhanced after mixing with hydroxyapatite. The compound membrane stimulates MSCs to differentiate into osteoblasts and it may be a good potential material for bone substitution.
Alkaline Phosphatase
;
metabolism
;
Animals
;
Bone Substitutes
;
pharmacology
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Chitosan
;
chemical synthesis
;
pharmacology
;
Durapatite
;
chemical synthesis
;
pharmacology
;
Membranes, Artificial
;
Mesenchymal Stromal Cells
;
cytology
;
Rats
8.Mineralization of PLGA-ASP-PEG modified with RGD-containing peptide.
Yulin SONG ; Qixin ZHENG ; Jianfeng ZHENG
Journal of Biomedical Engineering 2009;26(5):1056-1059
The RGD-containing peptide was used to modify the surface of porous PLGA-[ASP-PEG], and was incubated in the modified simulated body fluid (mSBF) for two weeks. The mineralization of PLGA-[ASP-PEG] was explored. The active peptide was used to modify PLGA-[ASP-PEG] through cross-linker (Sulfo-LC-SPDP), characterized by X-ray photoelectron spectroscopy (XPS) the peptide-modified PLGA-[ASP-PEG] (Experiment group, EG) and PLGA-[ASP-PEG] without modification (Control group, CG) were all incubated in mSBF for two weeks, confirmed by observation of Scanning electron microscope(SEM) and measurements of Energy dispersive analysis system of X-ray (EDS) and X-ray diffractometry (XRD). XPS indicated that the binding energy of sulphur in EG was 164eV, and the ratio of carbon to sulphur in EG was 99.746 : 0.1014, however, sulphur was not detected in CG; SEM analysis demonstrated that the mineralization layers were more consecutive and compact in EG than in CG. The results of EDS and XRD indicated that the main component of mineral was hydroxyapatite, and the ratio of Ca/P was 1.60 in EG, and 1.52 in CG. RGD-containing peptide provided enough functional groups for mineralization; the mineralized peptide- modified PLGA-[ASP-PEG] possessed the bonelike microstructure.
Biocompatible Materials
;
chemistry
;
Bone Substitutes
;
Bone and Bones
;
metabolism
;
Calcification, Physiologic
;
Lactic Acid
;
chemistry
;
Oligopeptides
;
chemistry
;
Osteogenesis
;
drug effects
;
Peptides
;
chemical synthesis
;
pharmacology
;
Polyglycolic Acid
;
chemistry
;
Surface Properties
9.Biocompatibility of combined deproteinized bone coated with hepatocyte growth factor as scaffold for osteoblasts in vitro in fetal rabbits.
Hong-sheng DANG ; Meng ZHAO ; Yong-xiang YAN ; Jia-guo LIU
Journal of Central South University(Medical Sciences) 2008;33(4):359-364
OBJECTIVE:
To determine the cellular compatibility of combined deproteinized bone(DPB) coated with hepatocyte growth factor (HGF), and to observe the adherent effect of osteoblasts in response to HGF.
METHODS:
Osteoblasts were isolated from fetal rabbits. Osteoblasts were cultured with DPB coated with HGF and deproteinized bone as experimental group and contral group, respectively. The proliferation and alkalinephosphatase activity were tested. Their growth was examined by inverted phase contrast microscope and scanning electronmicroscope.
RESULTS:
The osteoblasts were attached to the outside and inside surfaces and grew well. HGF/DPB could stimulate the alkalinephosphatase activity of the osteoblasts and improve the proliferation of the osteoblasts.
CONCLUSION
HGF/DPB has good biocompatibility and bone induction. HGF could improve the adherent effect of DPB on osteoblasts, and it could be used as scaffold material for the bone tissue engineering.
Animals
;
Biocompatible Materials
;
pharmacology
;
Bone Substitutes
;
metabolism
;
Bone and Bones
;
cytology
;
Cell Proliferation
;
Cells, Cultured
;
Female
;
Fetus
;
Hepatocyte Growth Factor
;
pharmacology
;
Osteoblasts
;
cytology
;
Osteogenesis
;
Pregnancy
;
Rabbits
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
10.Lumbar interbody fusion using autologous bone marrow mesenchymal stem cell-calcium phosphate ceramic composite in rhesus monkey.
Tao WANG ; Geng-ting DANG ; Zhao-qing GUO ; Min YANG ; Yu-min LI
Chinese Journal of Surgery 2006;44(12):843-847
OBJECTIVETo determine the osteogenic capacity of autologous bone marrow mesenchymal stem cells (BMSCs)-calcium phosphate ceramic composites in vitro and implanted as a bone graft substitute for lumbar anterior interbody fusion in rhesus monkeys.
METHODSFrom March 2003 to April 2005, 9 adult rhesus monkeys underwent lumbar L(3 - 4) and L(5 - 6) discectomy and interbody fusion via an anterior retroperitoneal approach. Two fusion sites in each animal were randomly assigned to two of three treatments: autogenous tricortical iliac crest bone graft (autograft group, n = 6) or cell-free ceramic graft (ceramic group, n = 6) or BMSCs-ceramic composite graft (BMSCs group, n = 6). Autologous BMSCs were culture-expanded and stimulated with osteogenic supplement. The cell-ceramic composites were constructed in a rotary dynamic cell culture system. The spinal fusion segments were evaluated by radiography, biomechanical testing, histologic analysis and histomorphometric analysis at 3 months post-surgery.
RESULTSBiomechanical testing showed that spinal segments from the autograft group and the BMSCs-ceramic group were statistically and significantly stiffer than the cell-free ceramic group. The BMSCs-ceramic group and the autograft group showed equivalent biomechanical stiffness by statistical analysis. Histologically, both the autograft group and the BMSCs-ceramic group achieved osseous union, but the cell-free ceramic group had a fibrous union. Quantitative histologic analysis showed that the amount of bone formation was significantly greater in the autograft group and the BMSCs-ceramic group compared with the cell-free ceramic group. However, the amount of ceramic residue was significantly greater in the cell-free ceramic group versus the BMSCs-ceramic group.
CONCLUSIONSThe results indicate that BMSC-ceramic composites can enhance bone regeneration and achieve osseous spinal fusion 3 months after the implantation in rhesus monkey interbody fusion model. Cell-free ceramics has an unsatisfactory efficacy in spinal fusion due to its tense fibrous fusion.
Animals ; Bone Regeneration ; drug effects ; Bone Substitutes ; pharmacology ; Calcium Phosphates ; Ceramics ; Female ; Macaca mulatta ; Male ; Mesenchymal Stromal Cells ; cytology ; Spinal Fusion ; methods ; Tissue Engineering

Result Analysis
Print
Save
E-mail