1.Progress in Application of Concentrated Growth Factor in Oral Tissue Regeneration.
Ying LU ; Si-Jun WANG ; Duo-Hong ZOU
Acta Academiae Medicinae Sinicae 2023;45(3):500-505
Tissue regeneration is an important engineering method for the treatment of oral soft and hard tissue defects.Growth factors,as one of the three elements of tissue regeneration,are a necessary condition for tissue regeneration.Concentrated growth factor(CGF)is a new generation of blood extract prepared by changing the centrifugal speed on the basis of the preparation of platelet-rich plasma(PRP)and platelet-rich fibrin(PRF).It contains abundant growth factors and a fibrin matrix with a three-dimensional network structure,being capable of activating angiogenesis and promoting tissue regeneration and healing.CGF has been widely used in the repair and regeneration of oral soft and hard tissues.This paper introduces the preparation and composition of CGF and reviews the application of CGF in oral implantation and the regeneration of oral bone tissue,periodontal tissue,and dental pulp tissue.
Platelet-Rich Plasma/metabolism*
;
Platelet-Rich Fibrin
;
Cell Proliferation
;
Bone and Bones
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Bone Regeneration
2.Oligonucleotide drugs and their progress in stomatology.
Hong ZHAO ; Zhi Min ZHANG ; Xin Ying ZOU ; Fei Long REN ; Shuang GAO
Chinese Journal of Stomatology 2023;58(6):603-608
Oligonucleotide drugs have the characteristics of targeting, modifiability and high biosafety. Recent studies have shown that oligonucleotide can be used to make biosensors, vaccine adjuvants, and has the functions of inhibiting alveolar bone resorption, promoting jaw and alveolar bone regeneration, anti-tumor, destroying plaque biofilm, and precise control of drug release. Therefore, it has a broad application prospect in the field of stomatology. This article reviews the classification, action mechanism and research status of oligonucleotide in stomatology. The aim is to provide ideas for further research and application of oligonucleotide.
Humans
;
Alveolar Bone Loss
;
Biofilms
;
Bone Regeneration
;
Oligonucleotides
;
Oral Medicine
3.CD301b+ macrophage: the new booster for activating bone regeneration in periodontitis treatment.
Can WANG ; Qin ZHAO ; Chen CHEN ; Jiaojiao LI ; Jing ZHANG ; Shuyuan QU ; Hua TANG ; Hao ZENG ; Yufeng ZHANG
International Journal of Oral Science 2023;15(1):19-19
Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.
Animals
;
Mice
;
Bone Regeneration
;
Cytokines/metabolism*
;
Interleukin-4/therapeutic use*
;
Macrophages/physiology*
;
Mammals
;
Osteogenesis
;
Periodontitis/drug therapy*
4.Research progress on biocomposites based on bioactive glass.
Yu PENG ; Liang LAN ; Junyu MU ; Sha HOU ; Lijia CHENG
Journal of Biomedical Engineering 2023;40(4):805-811
Bioactive glass (BG) has been widely used in the preparation of artificial bone scaffolds due to its excellent biological properties and non-cytotoxicity, which can promote bone and soft tissue regeneration. However, due to the brittleness, poor mechanical strength, easy agglomeration and uncontrollable structure of glass material, its application in various fields is limited. In this regard, most current researches mainly focus on mixing BG with organic or inorganic materials by freeze-drying method, sol-gel method, etc., to improve its mechanical properties and brittleness, so as to increase its clinical application and expand its application field. This review introduces the combination of BG with natural organic materials, metallic materials and non-metallic materials, and demonstrates the latest technology and future prospects of BG composite materials through the development of scaffolds, injectable fillers, membranes, hydrogels and coatings. The previous studies show that the addition of BG improves the mechanical properties, biological activity and regeneration potential of the composites, and broadens the application of BG in the field of bone tissue engineering. By reviewing the recent BG researches on bone regeneration, the research potential of new materials is demonstrated, in order to provide a reference for future related research.
Bone Regeneration
;
Bone and Bones
;
Freeze Drying
;
Glass
;
Hydrogels
5.Research updates of osteoimmunomodulation in osteogenesis.
Yaping MA ; Weiqun WANG ; Dingmei ZHANG ; Jun AO ; Xin WANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):759-766
The gold-standard for bone substitution of large bone defects continues to be autogenous bone graft. Artificial bone substitutes are difficult to replace the autogenous bone grafting due to excessive immune response, fast biodegradation characteristics and inappropriate biocompatibility. Given these drawbacks, osteoimmunology and its advanced functional biomaterials have gained growing attention in recent years. Immune system plays an essential role during bone healing via regulating the shift from inflammatory to anti-inflammation phenotype, and inflammatory cytokines response. The inflammatory reaction mainly include infiltration of immune cells (such as macrophages, neutrophils, T cells, B cells, etc) and release of inflammatory factors (such as IL-1β, IL-6, TNF-α, etc.) at the bone defects, which subsequently affect the step-wised process of bone healing rejuvenation. Hence, advanced bone biomaterials with immunomodulatory properties is of great significance for the treatment of patients with recalcitrant bone defects, especially for delayed healing or non-union. The reciprocal mechanism of immuno-modulated bone healing, however, is not fully understood and more research is required in the future.
Osteogenesis
;
Cytokines
;
Biocompatible Materials
;
Macrophages
;
T-Lymphocytes
;
Bone Regeneration
6.Role of collagen membrane in modified guided bone regeneration surgery using buccal punch flap approach: A retrospective and radiographical cohort study.
Deng Hui DUAN ; Hom Lay WANG ; En Bo WANG
Journal of Peking University(Health Sciences) 2023;55(6):1097-1104
OBJECTIVE:
To investigate whether the placement of absorbable collagen membrane increase the stability of alveolar ridge contour after guided bone regeneration (GBR) using buccal punch flap.
METHODS:
From June 2019 to June 2023, patients who underwent GBR using buccal punch flap simultaneously with a single implant placement in posterior region (from first premolar to second molar) were divided into coverage group, in which particular bone graft was covered by collagen membrane and non-coverage group. Cone beam CT (CBCT) was taken before surgery (T0), immediately after surgery (T1), and 3-7 months after surgery (T2), and the thickness of the buccal bone plate at different levels (0, 2, 4, and 6 mm) below the smooth-rough interface of the implant (BBT-0, -2, -4, -6) was mea-sured after superimposition of CBCT models using Mimics software.
RESULTS:
A total of 29 patients, including 15 patients in coverage group and 14 patients in non-coverage group, were investigated in this study. At T0, T1, and T2, there was no significant difference in BBT between the two groups (P>0.05). At T1, BBT-0 was (2.50±0.90) mm in the coverage group and (2.97±1.28) mm in the non-coverage group, with corresponding BBT-2 of (3.65±1.08) mm and (3.58±1.26) mm, respectively. At T2, BBT-0 was (1.22±0.55) mm in the coverage group and (1.70±0.97) mm in the non-coverage group, with corresponding BBT-2 of (2.32±0.94) mm and (2.57±1.26) mm, respectively. From T1 to T2, there were no statistically significant differences in the absolute values [(0.47±0.54)-(1.33±0.75) mm] and percentages [(10.04%±24.81%)-(48.43%±18.32%)] of BBT change between the two groups. The thickness of new bone formation in the buccal bone plate from T0 to T2 ranged from (1.27±1.09) mm to (2.75±2.15) mm with no statistical difference between the two groups at all levels.
CONCLUSION
In the short term, the GBR using buccal punch flap with or without collagen membrane coverage can effectively repair the buccal implant bone defect. But collagen membrane coverage showed no additional benefit on alveolar ridge contour stability compared with non-membrane coverage.
Humans
;
Cohort Studies
;
Retrospective Studies
;
Alveolar Ridge Augmentation
;
Collagen
;
Cone-Beam Computed Tomography
;
Bone Regeneration
;
Dental Implantation, Endosseous
7.A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair.
Beimin TIAN ; Xuan LI ; Jiujiu ZHANG ; Meng ZHANG ; Dian GAN ; Daokun DENG ; Lijuan SUN ; Xiaotao HE ; Chengtie WU ; Faming CHEN
International Journal of Oral Science 2022;14(1):45-45
The positive regulation of bone-forming osteoblast activity and the negative feedback regulation of osteoclastic activity are equally important in strategies to achieve successful alveolar bone regeneration. Here, a molybdenum (Mo)-containing bioactive glass ceramic scaffold with solid-strut-packed structures (Mo-scaffold) was printed, and its ability to regulate pro-osteogenic and anti-osteoclastogenic cellular responses was evaluated in vitro and in vivo. We found that extracts derived from Mo-scaffold (Mo-extracts) strongly stimulated osteogenic differentiation of bone marrow mesenchymal stem cells and inhibited differentiation of osteoclast progenitors. The identified comodulatory effect was further demonstrated to arise from Mo ions in the Mo-extract, wherein Mo ions suppressed osteoclastic differentiation by scavenging reactive oxygen species (ROS) and inhibiting mitochondrial biogenesis in osteoclasts. Consistent with the in vitro findings, the Mo-scaffold was found to significantly promote osteoblast-mediated bone formation and inhibit osteoclast-mediated bone resorption throughout the bone healing process, leading to enhanced bone regeneration. In combination with our previous finding that Mo ions participate in material-mediated immunomodulation, this study offers the new insight that Mo ions facilitate bone repair by comodulating the balance between bone formation and resorption. Our findings suggest that Mo ions are multifunctional cellular modulators that can potentially be used in biomaterial design and bone tissue engineering.
Bone Regeneration
;
Cell Differentiation
;
Ions/pharmacology*
;
Molybdenum/pharmacology*
;
Osteoclasts
;
Osteogenesis
;
Printing, Three-Dimensional
;
Tissue Scaffolds/chemistry*
8.Low intensity near-infrared light promotes bone regeneration via circadian clock protein cryptochrome 1.
Jinfeng PENG ; Jiajia ZHAO ; Qingming TANG ; Jinyu WANG ; Wencheng SONG ; Xiaofeng LU ; Xiaofei HUANG ; Guangjin CHEN ; Wenhao ZHENG ; Luoying ZHANG ; Yunyun HAN ; Chunze YAN ; Qian WAN ; Lili CHEN
International Journal of Oral Science 2022;14(1):53-53
Bone regeneration remains a great clinical challenge. Low intensity near-infrared (NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells (BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1 (CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein (BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.
Animals
;
Rats
;
Bone Morphogenetic Protein 2/metabolism*
;
Bone Regeneration
;
Cell Differentiation
;
Circadian Clocks
;
Cryptochromes/metabolism*
;
Osteoblasts/metabolism*
;
Osteogenesis
;
Transcription Factors/metabolism*
9.A hierarchical vascularized engineered bone inspired by intramembranous ossification for mandibular regeneration.
Xin YE ; Jianxiang HE ; Shaolong WANG ; Qianglong HAN ; Dongqi YOU ; Bin FENG ; Feiya ZHAO ; Jun YIN ; Mengfei YU ; Huiming WANG ; Huayong YANG
International Journal of Oral Science 2022;14(1):31-31
Mandibular defects caused by injuries, tumors, and infections are common and can severely affect mandibular function and the patient's appearance. However, mandible reconstruction with a mandibular bionic structure remains challenging. Inspired by the process of intramembranous ossification in mandibular development, a hierarchical vascularized engineered bone consisting of angiogenesis and osteogenesis modules has been produced. Moreover, the hierarchical vascular network and bone structure generated by these hierarchical vascularized engineered bone modules match the particular anatomical structure of the mandible. The ultra-tough polyion complex has been used as the basic scaffold for hierarchical vascularized engineered bone for ensuring better reconstruction of mandible function. According to the results of in vivo experiments, the bone regenerated using hierarchical vascularized engineered bone is similar to the natural mandibular bone in terms of morphology and genomics. The sonic hedgehog signaling pathway is specifically activated in hierarchical vascularized engineered bone, indicating that the new bone in hierarchical vascularized engineered bone underwent a process of intramembranous ossification identical to that of mandible development. Thus, hierarchical vascularized engineered bone has a high potential for clinical application in mandibular defect reconstruction. Moreover, the concept based on developmental processes and bionic structures provides an effective strategy for tissue regeneration.
Bone Regeneration
;
Bone Transplantation/methods*
;
Hedgehog Proteins
;
Humans
;
Mandible/surgery*
;
Osteogenesis
10.Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration.
Cheng LIANG ; Qingqing LIANG ; Xun XU ; Xiaojing LIU ; Xin GAO ; Maojiao LI ; Jian YANG ; Xiaotao XING ; Haisen HUANG ; Qi TANG ; Li LIAO ; Weidong TIAN
International Journal of Oral Science 2022;14(1):38-38
Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration.
Animals
;
Bone Morphogenetic Protein 7/pharmacology*
;
Cell Differentiation
;
Cells, Cultured
;
Collagen/pharmacology*
;
Dental Pulp
;
Dogs
;
Endothelial Cells
;
Gelatin
;
Humans
;
Methacrylates
;
Mice
;
Regeneration
;
Stem Cells

Result Analysis
Print
Save
E-mail