1.The effects of resveratrol on osteosarcoma cells: Regulation of the interaction between JAK2/STAT3 signaling pathway and tumor immune microenvironment.
Xiaoli WANG ; Guoliang MA ; Ruidong LIU ; Ruixia QI ; Jiudei QI ; Yuguo REN
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):420-427
Objective To investigate the effect of resveratrol on the tumor microenvironment in osteosarcoma. Methods A C57BL/6 xenograft mouse model was established and treated with resveratrol. Single-cell sequencing was performed to analyze changes in the tumor microenvironment. Immunohistochemistry was used to assess immune cell infiltration, while Western blotting was conducted to examine alterations in cellular signaling pathways. Results Resveratrol significantly inhibited the proliferation of LM8 osteosarcoma cells in C57BL/6 mice compared to the control group. Additionally, CD8+ T cell recruitment was enhanced. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was notably downregulated in LM8 osteosarcoma cells following resveratrol treatment. Conclusion Resveratrol promotes CD8+ T cell infiltration by inhibiting the JAK2/STAT3 signaling pathway, suggesting its potential as a therapeutic agent in osteosarcoma treatment.
Osteosarcoma/genetics*
;
STAT3 Transcription Factor/genetics*
;
Resveratrol/pharmacology*
;
Animals
;
Janus Kinase 2/genetics*
;
Signal Transduction/drug effects*
;
Tumor Microenvironment/immunology*
;
Cell Line, Tumor
;
Mice, Inbred C57BL
;
Mice
;
Humans
;
Cell Proliferation/drug effects*
;
Bone Neoplasms/metabolism*
;
CD8-Positive T-Lymphocytes/drug effects*
;
Xenograft Model Antitumor Assays
2.Bioinformatics Analysis on Key Genes and Immune Infiltration of Osteosarcoma.
Shuai LI ; Zhen-Zhong ZHENG ; Yu-Peng ZHANG ; Zi-Qun LIU ; Shi-Peng XIAO ; Zheng-Xiao OUYANG ; Bing WANG
Acta Academiae Medicinae Sinicae 2022;44(1):110-117
Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.
Bone Neoplasms/immunology*
;
Computational Biology/methods*
;
Gene Expression Profiling/methods*
;
Humans
;
Osteosarcoma/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor-Associated Macrophages/immunology*
3.Expression of PD1 and BTLA on the CD8+ T Cell and γδT Cell Subsets in Peripheral Blood of Non-Small Cell Lung Cancer Patients.
Yi BAO ; Juan-Fen MO ; Jia-Yuan WU ; Chen-Xi CAO
Chinese Medical Sciences Journal 2019;34(4):248-255
Objective To investigate the expression and regulation of programmed cell death protein 1 (PD1), B lymphocyte and T lymphocyte attenuator (BTLA) in peripheral blood of patients with non-small cell lung cancer (NSCLC); to examine the correlation of the mRNA levels between PD and BTLA in NSCLC. Methods Flow cytometry was used to detect the expression of PD1 and BTLA on the surfaces of CD8+ T cells and γδ+ T cells in the peripheral blood samples collected from 32 in-patients with stage IV NSCLC and 30 healthy individuals. We compared the expression of PD1 and BTLA on the surfaces of γδ+ T cells in the NSCLC patients with bone metastasis before and after the treatment of zoledronic acid. The correlations of PD1 and BTLA, as well as their ligands were analyzed using Pearson correlation analysis with the cBioPortal data platform. Results The frequency of PD1 on the surfaces of CD8+ T cells was significantly higher than that of the γδT cells in both healthy controls (t=2.324, P=0.024) and NSCLC patients(t=2.498, P=0.015). The frequency of PD1 on CD8+ T cells, rather than on γδ+ T cells, was significantly upregulated in advanced NSCLC patients compared with that in healthy controls (t=4.829, P<0.001). The PD1+ BTLA+γδT cells of the healthy controls were significantly lower than that of the NSCLC patients (t=2.422, P=0.0185). No differences in percentage of PD1+γδ+ and BTLA+γδ+ T cells were observed in 7 NSCLC patients with bone metastasis before and after zoledronic acid treatment. PD1 was positively correlated with BTLA in both lung adenocarcinoma (r=0.54; P<0.05) and lung squamous cell carcinoma (r=0.78; P<0.05). Conclusions The upregulation of co-inhibitory molecules occurs on the surfaces of both CD8+ T cells and γδT cells in advanced NSCLC, suggesting that these molecules were involved in regulating the inactivation of CD8+ T cells and γδ+ T cells, immune escape and tumor invasion.
Bone Neoplasms/secondary*
;
CD8-Positive T-Lymphocytes
;
Carcinoma, Non-Small-Cell Lung/immunology*
;
Case-Control Studies
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Ligands
;
Lung Neoplasms/immunology*
;
Lymphocyte Subsets/immunology*
;
Male
;
Middle Aged
;
Programmed Cell Death 1 Receptor/metabolism*
;
RNA, Messenger/metabolism*
;
Receptors, Antigen, T-Cell, gamma-delta
;
Receptors, Immunologic/metabolism*
4.JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1.
Zhong-liang WANG ; Ting-ting DU ; Rui-guang ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):88-94
In patients with advanced cancer, cancer-induced bone pain (CIBP) is a severe and common problem that is difficult to manage and explain. As c-Jun N-terminal kinase (JNK) and chemokine (C-X-C motif) ligand 1 (CXCL1) have been shown to participate in several chronic pain processes, we investigated the role of JNK and CXCL1 in CIBP and the relationship between them. A rat bone cancer pain model was established by intramedullary injection of Walker 256 rat gland mammary carcinoma cells into the left tibia of Sprague-Dawley rats. As a result, intramedullary injection of Walker 256 carcinoma cells induced significant bone destruction and persistent pain. Both phosphorylated JNK1 (pJNK1) and pJNK2 showed time-dependent increases in the ipsilateral spinal cord from day 7 to day 18 after tumor injection. Inhibition of JNK activation by intrathecal administration of SP600125, a selective pJNK inhibitor, attenuated mechanical allodynia and heat hyperalgesia caused by tumor inoculation. Tumor cell inoculation also induced robust CXCL1 upregulation in the ipsilateral spinal cord on day 18 after tumor injection. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody showed a stable analgesic effect. Intrathecal administration of SP600125 reduced CXCL1 increase in the spinal cord, whereas inhibition of CXCL1 in the spinal cord showed no influence on JNK activation. Taken together, these results suggested that JNK activation in spinal cord contributed to the maintenance of CIBP, which may act through modulation of CXCL1. Inhibition of the pJNK/CXCL1 pathway may provide a new choice for treatment of CIBP.
Animals
;
Antibodies, Neutralizing
;
immunology
;
therapeutic use
;
Bone Neoplasms
;
complications
;
metabolism
;
Cancer Pain
;
drug therapy
;
etiology
;
metabolism
;
Cell Line, Tumor
;
Chemokine CXCL1
;
immunology
;
metabolism
;
Female
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord
;
metabolism
6.Rhamnogalacturonan II is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells.
Sung Nam PARK ; Kyung Tae NOH ; Young Il JEONG ; In Duk JUNG ; Hyun Kyu KANG ; Gil Sun CHA ; Su Jung LEE ; Jong Keun SEO ; Dae Hwan KANG ; Tae Ho HWANG ; Eun Kyung LEE ; Byungsuk KWON ; Yeong Min PARK
Experimental & Molecular Medicine 2013;45(2):e8-
We evaluated the effectiveness of rhamnogalacturonan II (RG-II)-stimulated bone marrow-derived dendritic cells (BMDCs) vaccination on the induction of antitumor immunity in a mouse lymphoma model using EG7-lymphoma cells expressing ovalbumin (OVA). BMDCs treated with RG-II had an activated phenotype. RG-II induced interleukin (IL)-12, IL-1beta, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) production during dendritic cell (DC) maturation. BMDCs stimulated with RG-II facilitate the proliferation of CD8+ T cells. Using BMDCs from the mice deficient in Toll-like receptors (TLRs), we revealed that RG-II activity is dependent on TLR4. RG-II showed a preventive effect of immunization with OVA-pulsed BMDCs against EG7 lymphoma. These results suggested that RG-II expedites the DC-based immune response through the TLR4 signaling pathway.
Acute-Phase Proteins/metabolism
;
Adaptor Proteins, Vesicular Transport/metabolism
;
Animals
;
Antigens, CD14/metabolism
;
Bone Marrow Cells/cytology/drug effects
;
CD8-Positive T-Lymphocytes/*immunology
;
Carrier Proteins/metabolism
;
Cell Differentiation/drug effects
;
Cell Nucleus/drug effects/metabolism
;
Cell Proliferation/drug effects
;
Cytokines/biosynthesis
;
Dendritic Cells/cytology/drug effects/enzymology/*immunology
;
Enzyme Activation/drug effects
;
Lymphocyte Activation/*drug effects
;
Membrane Glycoproteins/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Mitogen-Activated Protein Kinases/metabolism
;
Myeloid Differentiation Factor 88/metabolism
;
NF-kappa B/metabolism
;
Neoplasms/immunology/*pathology
;
Pectins/*pharmacology
;
Phenotype
;
Protein Transport/drug effects
;
Receptors, Chemokine/metabolism
;
Signal Transduction/drug effects
;
T-Lymphocytes, Cytotoxic/cytology/drug effects
;
Toll-Like Receptor 4/*agonists/metabolism
7.Interferon-γ enhances human γδ T cell-mediated osteosarcoma cell killing in vitro.
Zhaoxu LI ; Jicun TANG ; Zhaoming YE
Journal of Southern Medical University 2013;33(1):22-25
OBJECTIVETo investigate the cytotoxic effect of γδ T cells from osteosarcoma patients against interferon-γ (IFN-γ)-treated osteosarcoma cells in vitro.
METHODSHuman γδ T cells were amplified by zoledronate from peripheral blood cells of osteosarcoma patients. The expression of Fas on the osteosarcoma cells were measured by flow cytometry and quantitative real-time PCR analysis before and after IFN-γ treatment. The cytotoxicity of γδ T cells against osteosarcoma cells was evaluated with LDH assay.
RESULTSIFN-γ significantly enhanced the susceptibility of the osteosarcoma cell lines HOS and U2OS to the cytotoxicity of γDelta; T cells from osteosarcoma patients (P<0.01). IFN-γ obviously up-regulated the expression of Fas in HOS and U2OS cells (P<0.01). Anti-FasL mAb failed to inhibit the cytotoxicity of γδ T cells in untreated osteosarcoma targets (P>0.05), but significantly impaired γδ T cell cytotoxicity in IFN-γ pre-treated osteosarcoma targets (P<0.01).
CONCLUSIONIFN-γ can enhance the cytotoxic effect of human γδ T cells from osteosarcoma patients against osteosarcoma cells in vitro.
Bone Neoplasms ; metabolism ; Cell Line, Tumor ; Cytotoxicity, Immunologic ; Humans ; Interferon-gamma ; pharmacology ; Osteosarcoma ; immunology ; metabolism ; Receptors, Antigen, T-Cell, gamma-delta ; immunology ; T-Lymphocytes, Cytotoxic ; cytology ; drug effects ; immunology ; fas Receptor ; metabolism
8.Next generation sequencing: new tools in immunology and hematology.
Antonio MORI ; Sara DEOLA ; Luciano XUMERLE ; Vladan MIJATOVIC ; Giovanni MALERBA ; Vladia MONSURRO
Blood Research 2013;48(4):242-249
One of the hallmarks of the adaptive immune system is the specificity of B and T cell receptors. Thanks to somatic recombination, a large repertoire of receptors can be generated within an individual that guarantee the recognition of a vast number of antigens. Monoclonal antibodies have limited applicability, given the high degree of diversity among these receptors, in BCR and TCR monitoring. Furthermore, with regard to cancer, better characterization of complex genomes and the ability to monitor tumor-specific cryptic mutations or translocations are needed to develop better tailored therapies. Novel technologies, by enhancing the ability of BCR and TCR monitoring, can help in the search for minimal residual disease during hematological malignancy diagnosis and follow-up, and can aid in improving bone marrow transplantation techniques. Recently, a novel technology known as next generation sequencing has been developed; this allows the recognition of unique sequences and provides depth of coverage, heterogeneity, and accuracy of sequencing. This provides a powerful tool that, along with microarray analysis for gene expression, may become integral in resolving the remaining key problems in hematology. This review describes the state of the art of this novel technology, its application in the immunological and hematological fields, and the possible benefits it will provide for the hematology and immunology community.
Allergy and Immunology*
;
Antibodies, Monoclonal
;
Bone Marrow Transplantation
;
Diagnosis
;
Gene Expression
;
Genome
;
Hematologic Neoplasms
;
Hematology*
;
Immune System
;
Microarray Analysis
;
Monitoring, Immunologic
;
Neoplasm, Residual
;
Population Characteristics
;
Receptors, Antigen, T-Cell
;
Recombination, Genetic
;
Sensitivity and Specificity
9.Meta analysis of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer.
Sixia HUANG ; Wenbin FAN ; Peng LIU ; Jinhui TIAN
China Journal of Chinese Materia Medica 2011;36(22):3198-3202
OBJECTIVETo assess the efficacy and safety of compound matrine injection combined with cisplatin chemotherapy for advanced gastric cancer.
METHODIt was searched relevant randomized Controlled trials (RCTs) from Cochrane Library, PubMed, EMBASE, CBM, and CNKI etc. The search was finished in February 11, 2010. And it was traced the related references and experts in this field, besides it was also communicated with other authors in order to obtain some certain information that had not been found. RCTs of compound matrine injection combined with cisplatin chemotherapy versus cisplatin chemotherapy for advanced gastric cancer were included. It was evaluated the quality of these included studies and analyzed data by Cochrane Collaboration's RevMan 5.0 software.
RESULTTen RCTs were included meta analysis results suggested that compared with chemotherapy alone, the combination had a statistically significant benefit in healing efficacy (OR = 1.99, 95% CI: 1.26-3.13, P < 0.05) and improving quality of life (OR = 3.83, 95% CI: 2.38-6.15, P < 0.001). Besides, the combination also had a statistically significant benefit in myelosuppression, white blood cell (OR = 0.44, 95% CI: 0.32-0.62, P < 0.001), hematoblast (OR = 0.40, 95% CI: 0.26-0.60, P < 0.001), liver function (OR = 0.33, 95% CI: 0.15-0.75, P < 0.05) and in reducing the gastroenteric reaction (OR = 0.32, 95% CI: 0.16-0.63, P = 0.001), decreasing the of CD3 ( MD = 2.96, 95% CI: 1.724. 20, P < 0.001), CD4 (MD = 9.04, 95% CI: 7.87-10.20, P < 0.001), CD4/CD8 (MD = 0.47, 95% CI: 0.41-0.54, P < 0.001) and NK cells (MD = 5.90, 95% CI: 4.53-7.26, P < 0.001).
CONCLUSIONCompared with cisplatin chemotherapy, compound matrine injection combined with cisplatin chemotherapy can significantly improve the efficiency, QOL and myelosuppression, and reduce adverse events.
Alkaloids ; administration & dosage ; Bone Marrow ; drug effects ; Cisplatin ; administration & dosage ; Humans ; Injections ; Quality of Life ; Quinolizines ; administration & dosage ; Randomized Controlled Trials as Topic ; Stomach Neoplasms ; drug therapy ; immunology
10.Implication of platelet-derived growth factor receptor alpha in prostate cancer skeletal metastasis.
Qingxin LIU ; Danielle JERNIGAN ; Yun ZHANG ; Alessandro FATATIS
Chinese Journal of Cancer 2011;30(9):612-619
Metastasis represents by far the most feared complication of prostate carcinoma and is the main cause of death for patients. The skeleton is frequently targeted by disseminated cancer cells and represents the sole site of spread in more than 80% of prostate cancer cases. Compatibility between select malignant phenotypes and the microenvironment of colonized tissues is broadly recognized as the culprit for the organ-tropism of cancer cells. Here, we review our recent studies showing that the expression of platelet-derived growth factor receptor alpha (PDGFRα) supports the survival and growth of prostate cancer cells in the skeleton and that the soluble fraction of bone marrow activates PDGFRα in a ligand-independent fashion. Finally, we offer pre-clinical evidence that this receptor is a viable target for therapy.
Animals
;
Antibodies, Monoclonal
;
therapeutic use
;
Bone Marrow
;
enzymology
;
pathology
;
Bone Neoplasms
;
prevention & control
;
secondary
;
Enzyme Activation
;
Humans
;
Male
;
Prostatic Neoplasms
;
drug therapy
;
enzymology
;
pathology
;
Receptor, Platelet-Derived Growth Factor alpha
;
antagonists & inhibitors
;
genetics
;
immunology
;
metabolism
;
Signal Transduction
;
Transcriptional Activation

Result Analysis
Print
Save
E-mail