1.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*
2.Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration.
Cheng LIANG ; Qingqing LIANG ; Xun XU ; Xiaojing LIU ; Xin GAO ; Maojiao LI ; Jian YANG ; Xiaotao XING ; Haisen HUANG ; Qi TANG ; Li LIAO ; Weidong TIAN
International Journal of Oral Science 2022;14(1):38-38
Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration.
Animals
;
Bone Morphogenetic Protein 7/pharmacology*
;
Cell Differentiation
;
Cells, Cultured
;
Collagen/pharmacology*
;
Dental Pulp
;
Dogs
;
Endothelial Cells
;
Gelatin
;
Humans
;
Methacrylates
;
Mice
;
Regeneration
;
Stem Cells
3.Frozen-thawed gelatin-induced osteogenic cell sheets of canine adipose-derived mesenchymal stromal cells improved fracture healing in canine model
Yongseok YOON ; Taeseong JUNG ; Muhammad AFAN SHAHID ; Imdad Ullah KHAN ; Wan Hee KIM ; Oh Kyeong KWEON
Journal of Veterinary Science 2019;20(6):e63-
We assessed the efficacy of frozen-thawed gelatin-induced osteogenic cell sheet (FT-GCS) compared to that of fresh gelatin-induced osteogenic cell sheet (F-GCS) with adipose-derived mesenchymal stromal cells (Ad-MSCs) used as the control. The bone differentiation capacity of GCS has already been studied. On that basis, the experiment was conducted to determine ease of use of GCS in the clinic. In vitro evaluation of F-GCS showed 3–4 layers with an abundant extracellular matrix (ECM) formation; however, cryopreservation resulted in a reduction of FT-GCS layers to 2–3 layers. Cellular viabilities of F-GCS and FT-GCS did not vary significantly. Moreover, there was no significant difference in mRNA expressions of Runx2, β-catenin, OPN, and BMP-7 between F-GCS and FT-GCS. In an in vivo experiment, both legs of six dogs with transverse radial fractures were randomly assigned to one of three groups: F-GCS, FT-GCS, or control. Fracture sites were wrapped with the respective cell sheets and fixed with 2.7 mm locking plates and six screws. At 8 weeks after the operations, bone samples were collected and subjected to micro computed tomography and histopathological examination. External volumes of callus as a portion of the total bone volume in control, F-GCS, and FT-GCS groups were 49.6%, 45.3%, and 41.9%, respectively. The histopathological assessment showed that both F-GCS and FT-GCS groups exhibited significantly (p < 0.05) well-organized, mature bone with peripheral cartilage at the fracture site compared to that of the control group. Based on our results, we infer that the cryopreservation process did not significantly affect the osteogenic ability of gelatin-induced cell sheets.
Animals
;
Bone Morphogenetic Protein 7
;
Bony Callus
;
Cartilage
;
Cryopreservation
;
Dogs
;
Extracellular Matrix
;
Fracture Healing
;
In Vitro Techniques
;
Leg
;
Mesenchymal Stromal Cells
;
RNA, Messenger
4.The role of bone morphogenetic protein signaling pathway in tooth root development.
Cang-Wei LIU ; Yi-Jun ZHOU ; Guang-Xing YAN ; Ce SHI ; Xue ZHANG ; Yue HU ; Xin-Qing HAO ; Huan ZHAO ; Hong-Chen SUN
West China Journal of Stomatology 2018;36(5):559-563
The bone morphogenetic protein (BMP) family is an important factor in the regulation of cell ular life activities and in the development of almost all tissues. BMP-mediated signaling plays an important role in tooth root development, which is a part of tooth development. Epithelial and mesenchymal interactions are involved in tooth root development, but the BMP signaling pathway has a different effect on tooth root development in epithelial and mesenchymal. This review summarizes the advances of BMP signaling in tooth root development.
Bone Morphogenetic Protein 2
;
Bone Morphogenetic Protein 7
;
Bone Morphogenetic Proteins
;
physiology
;
Odontogenesis
;
Signal Transduction
;
Tooth
;
Tooth Root
;
growth & development
5.Bone-forming peptide-2 derived from BMP-7 enhances osteoblast differentiation from multipotent bone marrow stromal cells and bone formation.
Hyung Keun KIM ; Jun Sik LEE ; Ji Hyun KIM ; Jong Keun SEON ; Kyung Soon PARK ; Myung Ho JEONG ; Taek Rim YOON
Experimental & Molecular Medicine 2017;49(5):e328-
Strategies for efficient osteogenic differentiation and bone formation from stem cells would have clinical applications in treating nonunion fracture healing. Many researchers have attempted to develop adjuvants as specific stimulators of bone formation for therapeutic use in patients with bone resorption. Therefore, development of specific stimulators of bone formation has therapeutic significance in the treatment of osteoporosis. To date, investigations of the mature forms of bone morphogenetic proteins (BMPs) have focused on regulation of bone generation. However, we previously identified new peptides from the immature precursor of BMP, and further analysis of these proteins should be performed. In this study, we identified a new peptide called bone-forming peptide-2 (BFP-2), which has stronger osteogenic differentiation-promoting activity than BMP-7. BFP-2 treatment of multipotent bone marrow stromal cells (BMSCs) induced expression of active alkaline phosphatase. In addition, BFP-2 enhanced CD44 and CD51 expression levels and increased Ca2+ content in BMSCs. Moreover, radiography at 8 weeks revealed that animals that had received transplants of BFP-2-treated BMSCs showed substantially increased bone formation compared with animals that had received BMSCs treated with BMP-7. Our findings indicate that BFP-2 may be useful in the development of adjuvant therapies for bone-related diseases.
Alkaline Phosphatase
;
Animals
;
Bone Morphogenetic Protein 7*
;
Bone Morphogenetic Proteins
;
Bone Resorption
;
Fracture Healing
;
Humans
;
Mesenchymal Stromal Cells*
;
Osteoblasts*
;
Osteogenesis*
;
Osteoporosis
;
Peptides
;
Radiography
;
Stem Cells
6.Use of stem-cell sheets expressing bone morphogenetic protein-7 in the management of a nonunion radial fracture in a Toy Poodle.
Jaeyong SONG ; Yongsun KIM ; Oh Kyeong KWEON ; Byung Jae KANG
Journal of Veterinary Science 2017;18(4):555-558
A 12-year-old castrated Toy Poodle was referred to the Kangwon National University Animal Hospital with an oligotrophic nonunion fracture in the distal 1/3 of the left radius and an intact ulna. After fixation by a locking plate and screws, adipose-derived mesenchymal stem-cell sheets expressing bone morphogenetic protein 7 (BMP-7) were transplanted to the fracture site to enhance the healing activity. The fracture was healed at 9 weeks after surgery. In the present case, the mesenchymal stem-cell sheets expressing BMP-7 promoted bone regeneration and healing in a nonunion fracture.
Animals
;
Bone Morphogenetic Protein 7
;
Bone Regeneration
;
Child
;
Dogs
;
Fractures, Ununited
;
Gangwon-do
;
Hospitals, Animal
;
Humans
;
Play and Playthings*
;
Radius
;
Ulna
7.TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence.
Lucy CASSAR ; Craig NICHOLLS ; Alex R PINTO ; Ruping CHEN ; Lihui WANG ; He LI ; Jun-Ping LIU
Protein & Cell 2017;8(1):39-54
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Actin-Related Protein 2
;
genetics
;
metabolism
;
Activin Receptors, Type II
;
genetics
;
metabolism
;
Bone Morphogenetic Protein 7
;
genetics
;
metabolism
;
Bone Morphogenetic Protein Receptors, Type II
;
genetics
;
metabolism
;
Breast Neoplasms
;
genetics
;
metabolism
;
Cellular Senescence
;
Female
;
HeLa Cells
;
Humans
;
MCF-7 Cells
;
Neoplasm Proteins
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
Receptor, Transforming Growth Factor-beta Type II
;
Receptors, Transforming Growth Factor beta
;
genetics
;
metabolism
;
Smad3 Protein
;
genetics
;
metabolism
;
Telomerase
;
genetics
;
metabolism
;
Telomere Homeostasis
8.Panax notoginseng saponins protect kidney from diabetes by up-regulating silent information regulator 1 and activating antioxidant proteins in rats.
Yue-Guang DU ; Li-Pei WANG ; Jun-Wen QIAN ; Ke-Na ZHANG ; Ke-Fu CHAI
Chinese journal of integrative medicine 2016;22(12):910-917
OBJECTIVETo explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.
METHODSDiabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.
RESULTSIn diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.
CONCLUSIONSPNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.
Acetylation ; drug effects ; Animals ; Antioxidants ; metabolism ; Blood Glucose ; metabolism ; Bone Morphogenetic Protein 7 ; metabolism ; Chemokine CCL2 ; metabolism ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; genetics ; physiopathology ; Gene Knockdown Techniques ; Immunohistochemistry ; Kidney ; drug effects ; pathology ; Kidney Function Tests ; Lipids ; blood ; Male ; Malondialdehyde ; metabolism ; Mesangial Cells ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Panax notoginseng ; chemistry ; Plasminogen Activator Inhibitor 1 ; genetics ; metabolism ; Protective Agents ; pharmacology ; therapeutic use ; Rats, Sprague-Dawley ; Saponins ; pharmacology ; therapeutic use ; Sirtuin 1 ; genetics ; Superoxide Dismutase ; metabolism ; Transcription Factor RelA ; metabolism ; Transcription, Genetic ; drug effects ; Transforming Growth Factor beta1 ; metabolism ; Up-Regulation ; drug effects
9.Regulatory effect of compound Coptidis Rhizoma capsule on unbalanced expression of renal tissue TGF-β1/BMP-7 and Smad signaling pathway in rats with early diabetic nephropathy.
Sheng LIU ; Xiang-qing CHEN ; Li-qin TANG ; Na YU ; Xiao-li ZHANG ; Hong-fang DU
China Journal of Chinese Materia Medica 2015;40(5):938-945
OBJECTIVETo investigate the effect of compound Coptidis Rhizoma capsule (CCRC) on unbalanced expression of renal tissue TGF-β1/BMP-7 and Smad signaling pathway in rats with early diabetic nephropathy (DN), and discuss CCRC's effect on DN rats with early diabetic nephropathy and its possible mechanism.
METHODDN model rats were established by injecting streptozotocin (STZ). The rats were randomly divided into seven groups: the normal group, the model group, the enalapril treatment group, the xiaoke pill treatment group and three CRCC treatment groups. They were orally administered once a day for five weeks. The fasting blood glucose (FBG), blood urea nitrogen (BUN), serum creatinine (Scr), insulin (Ins), 24 h urinary protein (24 h Upro) and 24 h urinary microalbumin (24 h UmAlb) were tested. The pathological changes in renal tissues were examined by optical microscopy. Immuno- histochemical measures were used to detect the expressions of TGF-β1, BMP-7, Smad2/3, Smad1/5, and Smad7 protein, and RT-PCR was used to detect TGF-β1 mRNA and BMP-7 mRNA in renal tissues.
RESULTCompared with model group, BUN, Scr, Ins, 24 h Upro and 24 h UmAlb levels decreased at different degrees in CCRC treatment groups; the abnormal pathomorphology in renal tissue was improved; immunohistochemistry results showed that the expression of TGF-β1 and Smad2/3 were reduced, while the expression of BMP-7, Smad1/5 and Smad7 increased in CRCC treatment groups; the expression of TGF-β1 mRNA were reduced, but the expression of BMP-7 mRNA had no obvious change in CRCC treatment groups.
CONCLUSIONCRCC can improve the early renal function, delay the progression of chronic renal pathology and maintain the dynamic balance of TGF-β1/BMP-7 expression in renal tissues of DN rats. The mechanism may be related to down-regulation of renal TGF-β1 and up-regulation of BMP-7 through Smad signaling pathway.
Animals ; Bone Morphogenetic Protein 7 ; genetics ; metabolism ; Coptis ; chemistry ; Diabetic Nephropathies ; drug therapy ; genetics ; metabolism ; Gene Expression Regulation ; drug effects ; Humans ; Kidney ; drug effects ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley ; Rhizome ; chemistry ; Signal Transduction ; drug effects ; Smad Proteins ; genetics ; metabolism ; Transforming Growth Factor beta1 ; metabolism
10.Induced differentiation of rat kidney stem cells into renal tubular epithelial cells.
Guang YANG ; Qingli CHENG ; Chunlin LI ; Yong YANG ; Yali JIA ; Wen YUE ; Xuetao PEI ; Yang LIU
Journal of Southern Medical University 2015;35(2):163-167
OBJECTIVETo investigate the differentiation capability of kidney stem cells (KSCs) into renal tubular epithelial cells (RTECs).
METHODSKSCs isolated from the renal papilla of 4-week-old SD rats were co-cultured with hypoxia-exposed RTEC in induced medium (containing activin A, BMP-7, and retinoic acid) and renal epithelial cell growth medium (REGM) alternately. The KSCs cultured in MSC medium served as the control. The KSC differentiation rates in both groups were determined using flow cytometry, immunofluorescence assay and qRT-PCR.
RESULTSFlow cytometry showed a CK-18 positive rate of 6.5Percnt; in the control KSC group and of 44.2% in the induced group. Immunofluorescence assay detected the positivity for mature epithelial cell markers CK-18, E-cadherin, and ZO-1 in the induced cells. The results of qRT-PCR showed significantly increased expression of E-cadherin and AQP-1 mRNAs in the induced cells compared with the control cells (P<0.01).
CONCLUSIONRat KSCs can be induced to differentiate into RTECs in vitro.
Activins ; chemistry ; Animals ; Aquaporin 1 ; metabolism ; Bone Morphogenetic Protein 7 ; chemistry ; Cadherins ; metabolism ; Cell Differentiation ; Coculture Techniques ; Culture Media ; chemistry ; Epithelial Cells ; cytology ; Keratin-18 ; metabolism ; Kidney Tubules ; cytology ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; cytology ; Tretinoin ; chemistry ; Zonula Occludens-1 Protein ; metabolism

Result Analysis
Print
Save
E-mail