1.Connexin 43-modified bone marrow stromal cells reverse the imatinib resistance of K562 cells via Ca 2+ -dependent gap junction intercellular communication.
Xiaoping LI ; Yunshuo XIAO ; Xiaoqi WANG ; Ruihao HUANG ; Rui WANG ; Yi DENG ; Jun RAO ; Qiangguo GAO ; Shijie YANG ; Xi ZHANG
Chinese Medical Journal 2023;136(2):194-206
BACKGROUND:
Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.
METHODS:
Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.
RESULTS:
Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.
CONCLUSIONS
Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Bone Marrow Cells
;
Cell Communication
;
Connexin 43/genetics*
;
Gap Junctions/metabolism*
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology*
;
Mesenchymal Stem Cells/metabolism*
;
Tumor Microenvironment
;
Calcium/metabolism*
2.The Latest Research Progress of Mesenchymal Stem Cells Derived from Multiple Myeloma Patients --Review.
Xiao-Sui LING ; Hai-Ping HE ; Li-Hua ZHANG ; Fan LI
Journal of Experimental Hematology 2023;31(4):1233-1236
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells. Bone marrow mesenchymal stem cells (MSC) play an important role in the progression of MM. Compared with normal donor derived MSC (ND-MSC), MM patients derived MSC (MM-MSC) exhibit abnormalities in genes, signaling pathways, protein expression levels and cytokines secreted by themselves. Moreover, the exosomes of MM-MSC can interact with the bone marrow microenvironment. The above reasons can lead to MM cell proliferation, chemoresistance, impaired osteogenic differentiation of MM-MSC, and affect the immunomodulatory capacity of MM patients. In order to further understand the pathogenesis and related influencing factors of MM, this paper reviews the latest research progress of MM-MSC.
Humans
;
Multiple Myeloma/pathology*
;
Osteogenesis
;
Mesenchymal Stem Cells
;
Cell Differentiation
;
Bone Marrow/metabolism*
;
Bone Marrow Cells/metabolism*
;
Tumor Microenvironment
3.Mechanisms of Extracellular Vesicles Involved in Multiple Myeloma --Review.
Yi-Hui GUO ; Jia-Wei XU ; Hui SONG ; Qing ZENG ; Wei-Min CHENG
Journal of Experimental Hematology 2022;30(5):1612-1616
Multiple myeloma (MM) is a common hematologic tumor characterized by malignant proliferation of clonal plasma cells, the exact pathogenesis of which is not yet fully understood. The extracellular vesicles (EV) are structures released by cells into their surroundings that do not have a functional nucleus and can communicate between cells or deliver biologically active proteins and nucleic acids to target cells. EV play an important role in the interaction between myeloma cells and the bone marrow microenvironment, and they can promote MM progression. In this paper, we summarize the recent research progress in the mechanism of action of EV on MM in order to provide inspiration for exploring new strategies for MM treatment and prognostic stratification.
Bone Marrow/metabolism*
;
Extracellular Vesicles/pathology*
;
Hematologic Neoplasms/metabolism*
;
Humans
;
Multiple Myeloma/pathology*
;
Nucleic Acids/metabolism*
;
Tumor Microenvironment
4.A Case of Chronic Myeloid Leukemia With Rare Variant ETV6/ABL1 Rearrangement.
Soo In CHOI ; Mi Ae JANG ; Woo Joon JEONG ; Byung Ryul JEON ; Yong Wha LEE ; Hee Bong SHIN ; Dae Sik HONG ; You Kyoung LEE
Annals of Laboratory Medicine 2017;37(1):77-80
No abstract available.
Bone Marrow/pathology
;
Chromosomes, Human, Pair 12
;
Chromosomes, Human, Pair 9
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
DNA/metabolism
;
Gene Rearrangement
;
Humans
;
In Situ Hybridization, Fluorescence
;
Karyotyping
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Male
;
Middle Aged
;
Oncogene Proteins, Fusion/*genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
Translocation, Genetic
5.Concurrence of e1a2 and e19a2 BCR-ABL1 Fusion Transcripts in a Typical Case of Chronic Myeloid Leukemia.
Jaehyeon LEE ; Dal Sik KIM ; Hye Soo LEE ; Sam Im CHOI ; Yong Gon CHO
Annals of Laboratory Medicine 2017;37(1):74-76
No abstract available.
Aged, 80 and over
;
Base Sequence
;
Bone Marrow/pathology
;
DNA/chemistry/metabolism
;
Female
;
Fusion Proteins, bcr-abl/*genetics
;
Humans
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis/*genetics
;
Multiplex Polymerase Chain Reaction
;
Protein Isoforms/genetics
;
Sequence Analysis, DNA
6.Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia.
Min Gu KANG ; Yu Na KIM ; Jun Hyung LEE ; Michael SZARDENINGS ; Hee Jo BAEK ; Hoon KOOK ; Hye Ran KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(2):101-110
BACKGROUND: To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. METHODS: Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. RESULTS: mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. CONCLUSIONS: The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML.
Bone Marrow Cells/metabolism
;
Case-Control Studies
;
Child
;
Cohort Studies
;
DNA, Mitochondrial/chemistry/genetics/metabolism
;
Female
;
Flow Cytometry
;
Gene Deletion
;
Gene Dosage
;
*Genome, Mitochondrial
;
Humans
;
Leukemia, Myeloid, Acute/genetics/mortality/*pathology
;
Male
;
Membrane Potential, Mitochondrial
;
Minisatellite Repeats/genetics
;
Odds Ratio
;
Reactive Oxygen Species/metabolism
;
Sequence Analysis, DNA
;
Survival Rate
7.A Novel KIT INDEL Mutation in Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1.
Jun Hyung LEE ; Chungoo PARK ; Soo Hyun KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(4):371-374
No abstract available.
Adult
;
Amino Acid Sequence
;
Bone Marrow/metabolism/pathology
;
Chromosomes, Human, Pair 21
;
Chromosomes, Human, Pair 8
;
Core Binding Factor Alpha 2 Subunit/*genetics
;
Exons
;
Female
;
Humans
;
INDEL Mutation
;
Leukemia, Myeloid, Acute/*genetics/pathology
;
Multiplex Polymerase Chain Reaction
;
Proto-Oncogene Proteins/*genetics
;
Proto-Oncogene Proteins c-kit/*genetics
;
Transcription Factors/*genetics
;
*Translocation, Genetic
8.Effect and mechanism of Bushen Huoxue recipe on ovarian reserve in mice with premature ovarian failure.
Kun-Kun SONG ; Wen-Wen MA ; Cong HUANG ; Jia-Hui DING ; Dan-Dan CUI ; Xiu-Juan TAN ; Jing XIAO ; Ming-Min ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):571-575
The aim of the present study was to explore the effect and mechanism of Bushen Huoxue recipe (BHR) on ovarian reserve in mice with premature ovarian failure (POF). Mice were divided into 3 groups: normal group, model group and BHR group. Intraperitoneal injection of cyclophosphamide was performed to create the POF model. Primordial follicular (PDF) number, ovarian wet weight, ovarian index, and estrous cycle were analyzed to evaluate the effect of BHR on POF. Meanwhile, the mRNA and protein level of Mouse Vasa Homologue (MVH) in the bone marrow, peripheral blood and ovary were detected, to explore the underlying mechanism of the treatment efficacy of BHR on ovarian reserve. By the time of BHR treatment for 28 days, BHR increased the PDF number and shortened the estrous cycle of POF mice. BHR also decreased the mRNA level of MVH in the bone marrow, and increased mRNA and protein level of MVH in the ovary of POF mice. Our results demonstrated a treatment efficacy of BHR on POF mice, and revealed that BHR might repair the dysfunction of germline stem cells in the bone marrow, and thus to improve the ovarian reserve and enhance the ovarian function of POF mice through neo-oogenesis.
Animals
;
Bone Marrow
;
drug effects
;
metabolism
;
Cyclophosphamide
;
toxicity
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
Estrous Cycle
;
drug effects
;
Female
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Mice
;
Ovarian Follicle
;
drug effects
;
growth & development
;
Ovarian Reserve
;
drug effects
;
Primary Ovarian Insufficiency
;
chemically induced
;
drug therapy
;
pathology
9.Vascular endothelial growth factor secreted by breast cancer cells plays a critical role in the formation of pre-metastatic niche in the mouse lung.
Ranran LI ; Bing YUAN ; Ying ZHANG ; Jianjian DAI ; Pengfei ZHANG ; Feifei FANG ; Mingyong HAN
Chinese Journal of Oncology 2016;38(1):17-22
OBJECTIVETo explore the formation of pre-metastatic niche in the mouse lung and to study the underlying molecular mechanisms whereby primary breast carcinoma-derived factors mediate recruitment of bone marrow-derived cells (BMDCs) and affect the formation of pre-metastatic lung environment before the arrival of tumor cells.
METHODSMammary carcinoma 4T1 cells were inoculated into the mammary gland to construct mouse model of breast cancer. Confocal microscopy was used to detect the recruitment of BMDCs in the pre-metastatic lungs. The expression of factors in the mouse sera and 4T1 cell culture media was assayed using RayBio Custom mouse cytokine antibody array kit. The mice were injected daily with recombinant VEGF for 7 consecutive days to observe the effect of VEGF on BMDCs recruitment in the mouse lung.
RESULTSNo BMDCs were observed in the lungs of control and 4T1-tumor-bearing mice on day 0. On day 7 and 14, clusters of BMDCs observed in the lungs of 4T1-tumor-bearing mice were 8.7±2.2/objective field and 48.8±3.2/objective field, respectively, significantly higher than those in the control mice (1.1±0.8/objective field and 3.1±1.7/objective field) (P<0.05 for both). Confocal microscopic observation found that metastatic breast cancer cells preferentially facilitate BMDCs recruitment sites in the pre-metastatic mouse lungs. The levels of VEGF, GM-CSF, and IL-6 in the serum of 4T1-tumor-bearing mice were significantly increased compared with those in the control group (P<0.05 for all). However, VEGF was detected only in the culture media of 4T1 cells. The amount of BMDCs in the mouse lung tissue was (22.8±3.6)/objective field in the VEGF group and (3.1±0.4)/objective field in the control group (P<0.05). There were 36.8±5.4 metastatic foci in the lung tissue of VEGF group and 12.6±2.2 in the control group (P<0.05).
CONCLUSIONSThe results of this study demonstrate that primary breast cancer cells can alter the lung microenvironment during the pre-metastatic phase and induce the formation of pre-metastatic niche. Primary tumor cell-derived VEGF may be a crucial factor responsible for the formation of pre-metastatic niche.
Animals ; Bone Marrow Cells ; Breast Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Granulocyte-Macrophage Colony-Stimulating Factor ; blood ; Humans ; Interleukin-6 ; blood ; Lung ; pathology ; Lung Neoplasms ; secondary ; Mice ; Recombinant Proteins ; administration & dosage ; Time Factors ; Tumor Microenvironment ; Vascular Endothelial Growth Factor A ; administration & dosage ; physiology ; secretion
10.Comparison of CCR5 Expression on T Lymphocytes between the Bone Marrow and Peripheral Blood Grafts after Mobilization.
Meng WANG ; Han-Yun REN ; Hui SUN ; Xin-Sheng XIE ; Jie MA ; Si-Lin GAN ; Yan-Fang LIU
Journal of Experimental Hematology 2016;24(3):821-826
OBJECTIVETo compare the expression of C-C chemokine receptor type 5 (CCR5) on T cells between bone marrow grafts (G-BM) and peripheral blood grafts (G-PB) nobilized by recombinant human granulocyte colony-stimulating factor (rhG-CSF), and to analyze the correlation of CCR5+ T lymphocyte expression in the grafts with the occurrence of acute GVHD.
METHODSForty-six healthy donor and their recipient pairs of related allogeneic hematopoietic stem cell transplantation (allo-HSCT) were enrolled in this study. All the recipients were received the infusion of G-BM and G-PB. The relative proportion and quantity of CCR5+ T cell subset in G-BM and G-PB were detected and compared. Then the correlation of the quantity of infused CCR5+ T cells with the occurrence of acute GVHD was analyzed.
RESULTSAfter mobilization, the proportions of CD4+ CCR5+ and CD8+ CCR5+ T cells occupying T cells in G-PB were both lower than those in G-BM. However, the absolute counts in G-PB were 15-25 times more than those in the bone marrow. And the absolute counts could not predict the occurrence of acute GVHD after transplantation (P>0.05).
CONCLUSIONThe difference of CCR5+ subsets between G-PB and G-BM may partially explain that grafts from different sources have different immunologic characteristics. Besides, the quantity of CCR5+ T cells in the grafts are not related with the occurrence of acute GVHD. However, the relative proportion of CCR5+ T cell subset in the grafts may be predictive of acute GVHD.
Bone Marrow ; metabolism ; Bone Marrow Transplantation ; Graft vs Host Disease ; pathology ; Granulocyte Colony-Stimulating Factor ; pharmacology ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cell Transplantation ; Humans ; Receptors, CCR5 ; metabolism ; T-Lymphocyte Subsets ; metabolism ; Tissue Donors

Result Analysis
Print
Save
E-mail