1.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
2.Yougui Yin attenuates adipogenic differentiation of bone marrow mesenchymal stem cells by modulating PPARγ pathway to treat glucocorticoid-induced osteonecrosis.
Hong-Zhong XI ; Hao CHEN ; Shuai HE ; Wei SONG ; Jia-Hao FU ; Bin DU ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(12):3356-3367
This study aims to investigate the pharmacological effects and mechanisms of Yougui Yin in treating glucocorticoid-induced osteonecrosis. A rat model of glucocorticoid-associated osteonecrosis of the femoral head(GA-ONFH) was established by intramuscular injection of dexamethasone at 20 mg·kg~(-1) every other day for 8 weeks. Rats were randomly allocated into control, model, and low-and high-dose(1.5 and 3.0 g·kg~(-1), respectively) Yougui Yin groups. After modeling, rats in Yougui Yin groups were administrated with Yougui Yin via gavage, which was followed by femoral specimen collection. Hematoxylin-eosin staining was employed to observe femoral head repair, and immunofluorescence was employed to assess adipogenic differentiation of bone marrow mesenchymal stem cells(BMSCs) within the femoral head. Cell experiments were carried out with dexamethasone(1 μmol·L~(-1))-treated BMSCs to evaluate the effects of Yougui Yin-medicated serum on adipogenic differentiation. Animal experiments demonstrated that compared with the model group, Yougui Yin at both high and low doses significantly improved bone mineral density(BMD), bone volume/total volume(BV/TV) ratio, and trabecular thickness(Tb.Th) in the femoral head. Additionally, Yougui Yin alleviated necrosis-like changes and adipocyte infiltration and significantly reduced the expression level of peroxisome proliferator-activated receptor γ(PPARγ) in the femoral head, thereby suppressing the adipogenic differentiation of BMSCs in GA-ONFH rats. The cell experiments revealed that Yougui Yin-medicated serum markedly inhibited dexamethasone-induced adipogenic differentiation of BMSCs and down-regulated the level of PPARγ. The overexpression of PPARγ attenuated the inhibitory effect of Yougui Yin-medicated serum on the adipogenic differentiation of BMSCs, indicating the critical role of PPARγ in Yougui Yin-mediated suppression of adipogenic differentiation of BMSCs. In conclusion, Yougui Yin exerts therapeutic effects on glucocorticoid-induced osteonecrosis by down-regulating PPARγ expression and inhibiting adipogenic differentiation of BMSCs.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
PPAR gamma/genetics*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Glucocorticoids/adverse effects*
;
Rats, Sprague-Dawley
;
Adipogenesis/drug effects*
;
Osteonecrosis/genetics*
;
Cell Differentiation/drug effects*
;
Bone Marrow Cells/metabolism*
;
Femur Head Necrosis/chemically induced*
;
Humans
3.Mechanism of sodium valproate in inhibiting ferroptosis of bone marrow mesenchymal stem cells via the adenosine monophosphate-activated protein kinase/Sirtuin 1 axis.
Qingsong GU ; Jianqiao LI ; Yuhu CHEN ; Linhui WANG ; Yiheng LI ; Ziru WANG ; Yicong WANG ; Min YANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):215-223
OBJECTIVE:
To investigate the effects of sodium valproate (VPA) in inhibiting Erastin-induced ferroptosis in bone marrow mesenchymal stem cells (BMSCs) and its underlying mechanisms.
METHODS:
BMSCs were isolated from bone marrow of 8-week-old Spragur Dawley rats and identified [cell surface antigens CD90, CD44, and CD45 were analyzed by flow cytometry, and osteogenic and adipogenic differentiation abilities were assessed by alizarin red S (ARS) and oil red O staining, respectively]. Cells of passage 3 were used for the Erastin-induced ferroptosis model, with different concentrations of VPA for intervention. The optimal drug concentration was determined using the cell counting kit 8 assay. The experiment was divided into 4 groups: group A, cells were cultured in osteogenic induction medium for 24 hours; group B, cells were cultured in osteogenic induction medium containing optimal concentration Erastin for 24 hours; group C, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA for 24 hours; group D, cells were cultured in osteogenic induction medium containing optimal concentration Erastin and VPA, and 8 μmol/L EX527 for 24 hours. The mitochondrial state of the cells was evaluated, including the levels of malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS). Osteogenic capacity was assessed by alkaline phosphatase (ALP) activity and ARS staining. Western blot analysis was performed to detect the expressions of osteogenic-related proteins [Runt-related transcription factor 2 (RUNX2) and osteopontin (OPN)], ferroptosis-related proteins [glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), and solute carrier family 7 member 11 (SLC7A11)], and pathway-related proteins [adenosine monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1)].
RESULTS:
The cultured cells were identified as BMSCs. VPA inhibited Erastin-induced ferroptosis and the decline of osteogenic ability in BMSCs, acting through the activation of the AMPK/SIRT1 pathway. VPA significantly reduced the levels of ROS and MDA in Erastin-treated BMSCs and significantly increased GSH levels. Additionally, the expression levels of ferroptosis-related proteins (GPX4, FTH1, and SLC7A11) significantly decreased. VPA also upregulated the expressions of osteogenic-related proteins (RUNX2 and OPN), enhanced mineralization and osteogenic differentiation, and increased the expressions of pathway-related proteins (AMPK and SIRT1). These effects could be reversed by the SIRT1 inhibitor EX527.
CONCLUSION
VPA inhibits ferroptosis in BMSCs through the AMPK/SIRT1 axis and promotes osteogenesis.
Mesenchymal Stem Cells/metabolism*
;
Ferroptosis/drug effects*
;
Animals
;
Valproic Acid/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Cell Differentiation/drug effects*
;
Cells, Cultured
;
AMP-Activated Protein Kinases/metabolism*
;
Osteogenesis/drug effects*
;
Piperazines/pharmacology*
;
Bone Marrow Cells/cytology*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction/drug effects*
4.Preparation of calcium phosphate nanoflowers and evaluation of their antioxidant and osteogenic induction capabilities in vitro.
Mingyu JIA ; Zhihong CHEN ; Huajian ZHOU ; Yukang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1203-1211
OBJECTIVE:
To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations.
METHODS:
Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers.
RESULTS:
Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05).
CONCLUSION
The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.
Animals
;
Osteogenesis/drug effects*
;
Mesenchymal Stem Cells/drug effects*
;
Calcium Phosphates/pharmacology*
;
Rats, Sprague-Dawley
;
Rats
;
Antioxidants/chemistry*
;
Cells, Cultured
;
Cell Differentiation/drug effects*
;
Nanostructures/chemistry*
;
Tissue Engineering/methods*
;
Bone Marrow Cells/cytology*
;
Coculture Techniques
;
Tissue Scaffolds/chemistry*
;
Male
;
Biocompatible Materials/chemistry*
;
Cell Survival
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Cell Proliferation
5.The inhibition effect of SOCS1 gene on the growth of human myelodysplastic syndrome cells and its potential mechanisms.
Yongxiao ZHANG ; Yinghua LI ; Rui SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(3):221-227
Objective To investigate the regulatory effect of suppressor of cytokine signaling 1 (SOCS1) on the proliferation and apoptosis of myelodysplastic syndrome (MDS) cells SKM-1 and its potential mechanisms. Methods SOCS1 was overexpressed in SKM-1 cells by transfection with exogenous SOCS1-overexpressing plasmid. Cell viability, cell cycle and apoptosis were analyzed with CCK-8 and flow cytometry assays, respectively. Western blot was used to evaluate the expression of proteins related to the Janus kinase 2/signal transducer and activator of transcription (JAK2/STAT) signaling pathway. Additionally, a NOD/SCID mouse model of MDS was established to record mouse body weight and survival time, assessing the impact of the SOCS1 gene on the growth of SKM-1 cells in vivo. Results Transfection of the SOCS1-overexpressing plasmid significantly increased the mRNA and protein expression levels of SOCS1 in the MDS cell line SKM-1. Overexpression of SOCS1 remarkably reduced cell viability, inhibited cell proliferation, and promoted apoptosis of SKM-1 cells, which also decreased the expression of phosphorylated-JAK2 (p-JAK2), phosphorylated-STAT3 (p-STAT3), and p-STAT5 proteins. Furthermore, in vivo experiment results showed that the body weight and survival time of mice in the SOCS1 overexpression group were significantly better than those in the MDS model group, and the number of CD45+ SKM-1 cells in the peripheral blood was significantly lower than that in the MDS model group, indicating that SOCS1 overexpression could inhibit the activity of SKM-1 cells in mice. Western blot results verified the protein expression level of SOCS1 in the bone marrow of mice in the SOCS1 overexpression group was significantly higher than that in the MDS model group, while the protein expression levels of p-JAK2, p-STAT3, and p-STAT5 were significantly lower than those in the MDS model group. Conclusion SOCS1 inhibits the proliferation of MDS cell line SKM-1 and promotes its apoptosis by negatively regulating the JAK2/STAT signaling pathway, making it a potential therapeutic target for myelodysplastic syndromes.
Animals
;
Humans
;
Mice
;
Apoptosis
;
Body Weight
;
Bone Marrow/metabolism*
;
Janus Kinase 2/metabolism*
;
Mice, Inbred NOD
;
Mice, SCID
;
Myelodysplastic Syndromes/metabolism*
;
Phosphorylation
;
STAT3 Transcription Factor/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Suppressor of Cytokine Signaling 1 Protein/metabolism*
;
Cell Proliferation
6.The effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells by regulating the SDF-1/CXCR4 signaling pathway.
Ruifang WANG ; Yingchun YANG ; Haibing QIAO ; Ying YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):784-789
Objective To investigate the effect of gentiopicroside on osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs), and to determine whether its mechanism involves the stromal cell-derived factor 1(SDF-1)/C-X-C chemokine receptor 4 (CXCR4) pathway. Methods BMSCs were divided into six groups: normal culture control group, osteogenic induction model group, low-dose gentiopicroside (L-gentiopicroside, 10 μmol/L) group, medium-dose gentiopicroside (M-gentiopicroside, 20 μmol/L) group, high-dose gentiopicroside (H-gentiopicroside, 40 μmol/L) group, and H-gentiopicroside+SDF-1/CXCR4 pathway inhibitor (AMD3100) group (H-gentiopicroside+AMD3100, 40 μmol/L gentiopicroside+10 μg/mL AMD3100). Cell viability, apoptosis, ALP activity, mineralized nodule formation, and protein levels of the SDF-1/CXCR4 pathway were assessed using the CCK-8 assay, flow cytometry, ALP staining, Alizarin Red S staining, and Western blotting, respectively. Results No mineralized nodules were observed in either the control and model group, although the color of the model group deepened. Compared with the control group, the model group showed significantly increased A value, ALP activity, expression levels of Runt related transcription factor 2 (RUNX2), osteopontin (OPN), SDF-1, CXCR4 proteins, along with a lower apoptosis rate. Compared with the model group, the L-gentiopicroside, M-gentiopicroside and H-gentiopicroside groups showed dose-dependently (L
7.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
8.The Expression and Clinical Significance of TCP1 in Newly Diagnosed Acute Myeloid Leukemia Patients.
Jia-Jia LI ; Yan-Ping WU ; Lin LIU ; Meng-Meng ZHANG ; Meng WANG ; Ping-Ping ZHANG ; Feng ZHANG
Journal of Experimental Hematology 2025;33(2):339-343
OBJECTIVE:
To detect the expression level of T-complex polypeptide 1 (TCP1) in the bone marrow of newly diagnosed acute myeloid leukemia (AML) patients, and explore its correlation with clinical characteristics and prognosis.
METHODS:
The bone marrow samples from 80 newly diagnosed AML patients and 30 iron deficiency anemia (IDA) patients were collected, and real time fluorescence quantitative PCR was used to detect the expression level of TCP1 . The clinical data of AML patients were collected, and the correlation of TCP1 expression with clinical characteristics and prognosis of patients were analyzed. The impact of TCP1 on overall survival (OS) of AML patients was identified by using Kaplan-Meier curve analysis. Cox regression analysis was used to identify the factors affecting prognosis of AML patients.
RESULTS:
Compared with IDA patients, the expression of TCP1 was significantly increased in AML patients (P < 0.01). The high expression group of TCP1 showed a higher proportion of patients with ≥60 years and non-remission after treatment, more accompanied by TET2 mutation and poor prognosis but shorter OS compared to the low expression group (all P < 0.05). The results of multivariate Cox regression analysis showed that age, chromosomal abnormalities, therapeutic efficacy and TCP1 expression were independent risk factors affecting prognosis of AML patients (all P < 0.05).
CONCLUSION
TCP1 is significantly upregulated in AML patients, and its expression is associated with partial clinical features and poor prognosis. It can serve as a prognostic indicator and potential therapeutic target for AML patients.
Gene Expression Regulation, Leukemic
;
Leukemia, Myeloid, Acute/metabolism*
;
Humans
;
Gene Expression Profiling
;
Bone Marrow/metabolism*
;
Anemia, Iron-Deficiency/metabolism*
;
Polymerase Chain Reaction
;
Prognosis
;
Kaplan-Meier Estimate
;
Proportional Hazards Models
;
Multivariate Analysis
;
Risk Factors
;
Chaperonin Containing TCP-1
9.Mechanism of Regulating MK2 to Improve Bone Marrow Inflammatory Damage after Hematopoietic Stem Cell Transplantation.
Zhao-Hui WANG ; Bo LONG ; Yu-Han WANG ; Zhi-Ting LIU ; Zi-Jie XU ; Shuang DING
Journal of Experimental Hematology 2025;33(5):1453-1460
OBJECTIVE:
To investigate the role of MK2 inhibitor MMI-0100 on inflammatory response after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and related mechanisms.
METHODS:
An allo-HSCT mouse model was established. Recipient rats were randomly divided into BMT+NaCl group and BMT+MMI-0100 group, and were injected with NaCl and MMI-0100 every day after transplantation, respectively. Samples of the two groups were collected on d 7 and 14, femur paraffin sections were stained with HE, and pathological changes in the bone marrow cavity were observed under the light microscope. The gene and protein expression levels of pro-inflammatory cytokines IL-1β and IL-18 were detected by qPCR and Western blot. Macrophage typing was detected by flow cytometry. The expression levels of NLRP3 and Caspase-1 were detected by Western blot.
RESULTS:
Inflammatory cell infiltration in the bone marrow cavity was significantly reduced in the BMT+MMI-0100 group. Western blot results showed that the protein expression levels of IL-1β and IL-18 in the BMT+MMI-0100 group were decreased compared to the BMT+NaCl group on day 7 and day 14 (all P <0.01). The qPCR results showed that compared to the BMT+NaCl group, the IL-18 gene expression levels in the BMT+MMI-0100 group were significantly reduced on day 7 and day 14 (both P <0.01). In the BMT+MMI-0100 group, the expression level of IL-1β gene decreased on day 7 (P <0.05), but increased and was higher than that in the BMT+NaCl group on day 14 (P <0.05). Flow cytometry results showed that the expression of M1 macrophages and M1/M2 ratio decreased in the BMT+MMI-0100 group compared to BMT+NaCl group (all P <0.05). Western blot results showed that the protein expression levels of NLRP3 and Caspase-1 in the BMT+MMI-0100 group were lower than those in the BMT+NaCl group (all P <0.05).
CONCLUSION
MMI-0100 can ameliorate bone marrow inflammatory injury after allo-HSCT and may act by reducing NLRP3 expression to promote M2 polarization.
Animals
;
Interleukin-1beta/metabolism*
;
Rats
;
Interleukin-18/metabolism*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammation
;
Bone Marrow/pathology*
;
Protein Serine-Threonine Kinases/metabolism*
;
Intracellular Signaling Peptides and Proteins/antagonists & inhibitors*
;
Caspase 1/metabolism*
;
Macrophages
;
Transplantation, Homologous
10.Knockdown of NPTX1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells.
Ting SHUAI ; Yanyan GUO ; Chunping LIN ; Xiaomei HOU ; Chanyuan JIN
Journal of Peking University(Health Sciences) 2025;57(1):7-12
OBJECTIVE:
To initially investigate the function of neuronal pentraxin 1 (NPTX1) gene on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).
METHODS:
hBMSCs were induced to undergo osteogenic differentiation, and then RNA was collected at different time points, namely 0, 3, 7, 10 and 14 d. The mRNA expression levels of key genes related with osteogenic differentiation, including runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OCN), and NPTX1, were detected on the basis of quantitative real-time polymerase chain reaction (qPCR) technology. In order to establish a stable NPTX1-knockdown hBMSCs cell line, NPTX1 shRNA lentivirus was constructed and used to infect hBMSCs. ALP staining, alizarin red (AR) staining, and qPCR were employed to assess the impact of NPTX1-knockdown on the osteogenic differentiation ability of hBMSCs.
RESULTS:
The results showed that during the osteogenic differentiation of hBMSCs in vitro, the mRNA expression levels of osteogenic genes RUNX2, ALP and OCN significantly increased compared with 0 d, while NPTX1 expression decreased markedly (P < 0.01) as the osteogenic induction period exten-ded. At 72 h post-infection with lentivirus, the result of qPCR indicated that the knockdown efficiency of NPTX1 was over 60%. After knocking down NPTX1 in hBMSCs, RNA was extracted from both the NPTX1-knockdown group (sh NPTX1 group) and the control group (shNC group) cultured in regular proliferation medium. The results of qPCR showed that the expression levels of osteogenic-related genes RUNX2 and osterix (OSX) were significantly higher in the sh NPTX1 group compared with the shNC group (P < 0.01). ALP staining revealed a significantly deeper coloration in the sh NPTX1 group than in the shNC group at the end of 7 d of osteogenic induction. AR staining demonstrated a marked increase in mineralized nodules in the sh NPTX1 group compared with the shNC group at the end of 14 d of osteogenic induction.
CONCLUSION
NPTX1 exerts a modulatory role in the osteogenic differentiation of hBMSCs, and its knockdown has been found to enhance the osteogenic differentiation of hBMSCs. This finding implies that NPTX1 could potentially serve as a therapeutic target for the treatment of osteogenic abnormalities, including osteoporosis.
Humans
;
Mesenchymal Stem Cells/cytology*
;
Osteogenesis/genetics*
;
Cell Differentiation/genetics*
;
Nerve Tissue Proteins/genetics*
;
Cells, Cultured
;
C-Reactive Protein/genetics*
;
RNA, Small Interfering/genetics*
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Bone Marrow Cells/cytology*
;
Gene Knockdown Techniques
;
Osteocalcin/metabolism*
;
Alkaline Phosphatase/metabolism*
;
RNA, Messenger/metabolism*

Result Analysis
Print
Save
E-mail