1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
5.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
7.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
8.Effect of an artificial intelligence-assisted recognition system on colonoscopy quality
Bo JIN ; Liang HUANG ; Shan LIU ; Bin LYU ; Yue HU
Chinese Journal of Internal Medicine 2024;63(11):1111-1115
Objective:To explore the value of the artificial intelligence (AI)-assisted recognition system in the detection quality of colonoscopy.Methods:From January 2023, the data on 700 patients who underwent colonoscopy in the Digestive Endoscopy Center of the First Affiliated Hospital of Zhejiang Chinese Medical University were collected prospectively. Based on a computerized number method, patients were divided into the AI assistance group and control group. The detection rate of adenomas (ADR) and polyps, number and size of adenomas, Boston bowel preparation scale (BBPS), intubation time, withdrawal time, and cecal intubation rate were compared between groups. Normally distributed data were analyzed with the t-test for independent samples. Non-normally distributed data were analyzed with the Rank sum test. Categorical data were analyzed with the Chi-square test. Results:In total, 691 patients were included in the analysis. According to the intention to treat (ITT) analysis and per-protocol (PP) analysis, the withdrawal time of the AI group was higher than that of the control group (ITT:436 (305, 620) vs 368 (265, 510) s, Z=-4.24, P<0.001;PP:439 (306, 618) vs 364 (262, 500) s, t=-4.50, P<0.001); however, there were no significant differences in the ADR (ITT:123(35.5%) vs 111(32.2%), χ2=0.88, P=0.349;PP:108(34.2%) vs 99(31.1%), χ2=0.67, P=0.414), the number of adenomas (ITT:0(0, 1) vs 0(0, 1), Z=-1.08, P=0.282;PP:0(0, 1) vs 0(0, 1), Z=-0.87, P=0.387), the polyp detection rate (ITT:85(24.6%) vs 85(24.6%), χ2=0.001, P=0.983;PP:79(25.0%) vs 77(24.2%), χ2=0.05, P=0.818), BBPS (ITT:6.5±0.9 vs 6.5±0.7, t=-0.59, P=0.555;PP:6.7±0.6 vs 6.6±0.6, t=-1.83, P=0.068), and cecal intubation rate (ITT:346(100.0%) vs 343(99.4%), χ2=0.50, P=0.478) between these two groups. After excluding inadequate bowel preparation and failed cecal intubation cases, the AI-assisted system was found to significantly improve the detection rate of small adenomas (≤5 mm) (PP:27.8%(88/316)vs 21.1%(67/318), χ2=3.94, P=0.047). Conclusions:The application of an AI-assisted system in colonoscopy can increase the withdrawal time and improve the detection rate of small adenomas.
9.Quality contol of Bupleurum chinense
Jing-Bo YU ; Yue HAN ; Qi-Di AI ; Yang SUN ; Zi-Yang ZHOU ; Sai-Hu LIU ; Zi-Hao ZHANG ; Hui SHU ; Yu-Hong WANG
Chinese Traditional Patent Medicine 2024;46(7):2129-2133
AIM To control the quality of Bupleurum chinense DC.METHODS The analysis was performed on a 35℃ thermostatic Venusil XBP C18 column(250 mm×4.6 mm,5 μm),with the mobile phase comprising of acetonitrile-water flowing at 1.0 mL/min,and the detection wavelength was set at 210 nm.The HPLC fingerprints were established,after which the contents of saikosaponin A,saikosaponin B2,saikosaponin C,saikosaponin D,saikosaponin E,saikosaponin F and 6″-O-acetylsaikosaponin A were determined,and principal component analysis was made.RESULTS There were thirteen common peaks in the fingerprints for twelve batches of medicinal materials with the similarities of 0.970-0.995.Seven constituents showed good linear relationships within their own ranges(R2≥0.999 8),whose average recoveries were 90.75%-100.91% with the RSDs of 1.6%-4.0% .Various constituents demonstrated similar contents in medicinal materials originated in Inner Mongolia and Shanxi.CONCLUSION This precise,accurate and stable method can be used for the quality evaluation of B.chinense.
10.Effects of liver-specific knockout of AMPKα on glycometabolism genes in mice
Hui-Ming ZHANG ; Qian GAO ; Yan-Bo HU ; Xiao-Ru ZHANG ; Zhong-Yue ZHANG ; Yan YANG ; Feng GAO ; Min-Jie WANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1184-1188
Objective To investigate the effects of liver-specific knockout of adenosine 5'-monophosphate-activated protein kinase α(AMPKα)on pancreatic function and glucose metabolism-related genes in mice.Methods AMPKα1/α2flox/flox mice were divided into blank group(common feed)and model group(60%high fat choline deficiency feet)with eight mice in each group,and another 8 AMPKα1/α2flox/flox/Alb-Cre+mice were divided into the knockout group(60%high fat choline deficiency feet).The kit detected the levels of blood lipids and liver function indexes.The differential genes in the mouse pancreas were detected by transcriptome sequencing.The expression of differential genes in mice was detected by real-time fluorescence quantitative polymerase chain reaction and Western blotting.Results The levels of triglyceride in the blank group,model group and knockout group were(0.94±0.11),(0.71±0.14)and(1.05±0.17)mmol·L-1;the levels of triglyceride and high-density lipoprotein were(1.62±0.07),(0.44±0.08)and(0.90±0.06)mmol·L-1;the levels of glutamic oxaloacetic transaminase were(7.02±5.87),(15.60±3.15)and(22.70±2.14)U·L-1;the levels of glutamic pyruvic transaminase were(14.56±11.55),(48.64±15.84)and(75.40±11.96)U·L-1;the expression levels of phosphoenolpyruvate carboxykinase 1(PCK1)mRNA were 1.00±0,1.37±0.25 and 0.31±0.18;the relative expression levels of PCK1 protein were 0.77±0.27,1.23±0.43 and 0.51±0.40,respectively.Significant differences existed in the above indexes between the knockout group and the model group(all P<0.05).Conclusion PCK1 gene may be an essential gene mediating the effect of liver AMPKα on islet function.

Result Analysis
Print
Save
E-mail