1.Wdr63 Deletion Aggravates Ulcerative Colitis Likely by Affecting Th17/Treg Balance and Gut Microbiota
Hao ZHU ; Meng-Yuan ZHU ; Yang-Yang CAO ; Qiu-Bo YANG ; Zhi-Peng FAN
Progress in Biochemistry and Biophysics 2025;52(1):209-222
ObjectiveUlcerative colitis is a prevalent immunoinflammatory disease. Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis. The actin cytoskeleton contributes to regulating the proliferation, differentiation, and migration of Th17 and Treg cells. Wdr63, a gene containing the WD repeat domain, participates in the structure and functional modulation of actin cytoskeleton. Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition. This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis. MethodsWe constructed Wdr63-/- mice, induced colitis in mice using dextran sulfate sodium salt, collected colon tissue for histopathological staining, collected mesenteric lymph nodes for flow cytometry analysis, and collected healthy mouse feces for microbial diversity detection. ResultsCompared with wild-type colitis mice, Wdr63-/- colitis mice had a more pronounced shortening of colonic tissue, higher scores on disease activity index and histological damage index, Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes, a lower level of anti-inflammatory cytokine IL-10, and a higher level of pro-inflammatory cytokine IL-17A. In addition, WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis. It maintains the balance of Bacteroidota and Firmicutes, promoting the formation of beneficial intestinal bacteria linked to immune inflammation. ConclusionWdr63 deletion aggravates ulcerative colitis in mice, WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.
2.Misaligned light entrainment causes metabolic disorders in Chrono knockout mice.
Ruo-Han WANG ; Shao-Ying LAN ; Bo-Yuan CAO ; Xi-Ming QIN
Acta Physiologica Sinica 2025;77(4):731-740
Most of the life forms on Earth have gradually evolved an endogenous biological clock under the long-term influence of periodic daily light-dark cycles. This biological clock system plays a crucial role in the orderly progression of life activities. In mammals, central circadian clock is located in the suprachiasmatic nucleus of the hypothalamus and the function of the biological clock relies on a transcription-translation negative feedback loop. As a negative regulator in this loop, the function of CHRONO is less known. To deeply explore the role of the Chrono gene in rhythm entrainment and physiology, we constructed a Chrono gene knockout mouse strain using the CRISPR/Cas9 technology and analyzed its entrainment ability under different T cycles. Running wheel tests and glucose tolerance tests were also performed. The results showed that the period of the endogenous biological clock of Chrono knockout mice was prolonged, and the entrainment rate under the T21 cycle was decreased. In addition, metabolic abnormalities, including weight gain and impaired glucose tolerance, were observed in the non-entrained mice. Overall, this study reveals a crucial role of the Chrono gene in maintaining circadian rhythms and metabolic balance, providing a new perspective for understanding the relationship between the biological clock and metabolism. Further research is needed to fully understand the underlying molecular mechanisms.
Animals
;
Mice, Knockout
;
Mice
;
Circadian Rhythm/genetics*
;
Metabolic Diseases/physiopathology*
;
Photoperiod
;
Male
;
Period Circadian Proteins/physiology*
;
Light
;
Circadian Clocks/physiology*
3.Aldolase A accelerates hepatocarcinogenesis by refactoring c-Jun transcription.
Xin YANG ; Guang-Yuan MA ; Xiao-Qiang LI ; Na TANG ; Yang SUN ; Xiao-Wei HAO ; Ke-Han WU ; Yu-Bo WANG ; Wen TIAN ; Xin FAN ; Zezhi LI ; Caixia FENG ; Xu CHAO ; Yu-Fan WANG ; Yao LIU ; Di LI ; Wei CAO
Journal of Pharmaceutical Analysis 2025;15(7):101169-101169
Hepatocellular carcinoma (HCC) expresses abundant glycolytic enzymes and displays comprehensive glucose metabolism reprogramming. Aldolase A (ALDOA) plays a prominent role in glycolysis; however, little is known about its role in HCC development. In the present study, we aim to explore how ALDOA is involved in HCC proliferation. HCC proliferation was markedly suppressed both in vitro and in vivo following ALDOA knockout, which is consistent with ALDOA overexpression encouraging HCC proliferation. Mechanistically, ALDOA knockout partially limits the glycolytic flux in HCC cells. Meanwhile, ALDOA translocated to nuclei and directly interacted with c-Jun to facilitate its Thr93 phosphorylation by P21-activated protein kinase; ALDOA knockout markedly diminished c-Jun Thr93 phosphorylation and then dampened c-Jun transcription function. A crucial site Y364 mutation in ALDOA disrupted its interaction with c-Jun, and Y364S ALDOA expression failed to rescue cell proliferation in ALDOA deletion cells. In HCC patients, the expression level of ALDOA was correlated with the phosphorylation level of c-Jun (Thr93) and poor prognosis. Remarkably, hepatic ALDOA was significantly upregulated in the promotion and progression stages of diethylnitrosamine-induced HCC models, and the knockdown of A ldoa strikingly decreased HCC development in vivo. Our study demonstrated that ALDOA is a vital driver for HCC development by activating c-Jun-mediated oncogene transcription, opening additional avenues for anti-cancer therapies.
4.Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway.
An-Na XIE ; Sun-Zheng-Yuan ZHANG ; Yu ZHANG ; Jin-Long CAO ; Cheng-Long WANG ; Li-Bo WANG ; Hong-Jin WU ; Jie ZHANG ; Wei-Wei DAI
Journal of Integrative Medicine 2025;23(6):670-682
OBJECTIVE:
Glucocorticoid-induced osteoporosis (GIOP) is a common complication of prolonged glucocorticoid therapy. Chlorogenic acid (CGA), a polyphenol with antioxidant properties that is extracted from traditional Chinese medicines such as Eucommiae Cortex, has potential anti-osteoporotic activity. This study aimed to investigate the possible effects of CGA on GIOP in mice and murine long bone osteocyte Y4 (MLO-Y4) cells and explore the underlying molecular mechanisms.
METHODS:
The protective effects of CGA were initially evaluated in the GIOP mouse model induced by dexamethasone (Dex). The micro-computed tomography, hematoxylin-eosin staining, silver nitrate staining, and serum detection were used to assess the efficacy of CGA for improving bone formation in vivo. Then, network pharmacology analysis was used to predict the potential targets and molecular mechanisms underlying the therapeutic efficacy of CGA against GIOP. After that, 2',7'-dichlorofluorescein diacetate staining, flow cytometry, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting were used to verify the mechanisms of CGA against GIOP in vitro.
RESULTS:
Animal experiments showed that CGA treatment effectively attenuated Dex-induced decreases in bone mass and strength and improved disrupted osteocyte morphology in mice. The protein-protein interaction analysis highlighted erb-b2 receptor tyrosine kinase (ERBB2), which is also known as human epidermal growth factor receptor 2 (HER2), caspase-3, kinase insert domain receptor, matrix metallopeptidase 9, matrix metallopeptidase 2, proto-oncogene tyrosine-protein kinase Src, and epidermal growth factor receptor as core targets. The Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched pathways (P < 0.05), including the ERBB, phosphoinositide 3 kinase-AKT serine/threonine kinase 1 (AKT), and mechanistic target of rapamycin kinase (mTOR) pathways. Cellular experiments verified that CGA enhanced bone formation and promoted autophagy while inhibiting apoptosis in MLO-Y4 cells exposed to Dex, which was associated with the upregulated expression of HER2 and activation of the HER2/AKT/mTOR signaling pathway.
CONCLUSION
CGA exerted anti-osteoporotic effects against GIOP, partially through targeting osteocytes and modulating the HER2/AKT/mTOR signaling pathway. Please cite this article as: Xie AN, Zhang SZY, Zhang Y, Cao JL, Wang CL, Wang LB, Wu HJ, Zhang J, Dai WW. Chlorogenic acid mitigates glucocorticoid-induced osteoporosis via modulation of HER2/AKT/mTOR signaling pathway. J Integr Med. 2025; 23(6):670-682.
Animals
;
Chlorogenic Acid/therapeutic use*
;
Osteoporosis/metabolism*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Mice
;
Glucocorticoids/adverse effects*
;
Receptor, ErbB-2/metabolism*
;
Proto-Oncogene Mas
;
Dexamethasone/adverse effects*
;
Osteocytes/drug effects*
;
Osteogenesis/drug effects*
;
Male
;
Cell Line
;
Mice, Inbred C57BL
;
Humans
5.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
6.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
7.The value of serum LBP and CXCL-10 in the differential diagnosis of acute upper respiratory tract bacterial infection in children and its influencing factors
Yi YUAN ; Chunhong ZHANG ; Jian CAO ; Bo HUANG
International Journal of Laboratory Medicine 2024;45(6):659-662,666
Objective To investigate the differential diagnostic value of serum lipopolysaccharide binding protein(LBP)and serum CXC chemokine ligand-10(CXCL-10)in children with acute upper respiratory tract bacterial infection and its influencing factors.Methods A total of 90 children with acute upper respiratory tract infection admitted to the hospital from July 2021 to June 2022 were enrolled in the study as the study group,and 40 healthy children who underwent physical examination in the hospital during the same period were enrolled as the healthy group.According to the results of sputum bacterial culture,the study group was divided into bacterial infection group(51 cases)and non-bacterial infection group(39 cases).The serum levels of LBP and CXCL-10 were detected by using enzyme-linked immunosorbent assay.Receiver operating charac-teristic(ROC)curve was used to evaluate the value of serum LBP and CXCL-10 in the differential diagnosis of acute upper respiratory tract bacterial infection in children.Multivariate Logistic regression was used to ana-lyze the influencing factors of acute upper respiratory tract bacterial infection in children.Results The serum levels of LBP and CXCL-10 in the study group were higher than those in the healthy group(P<0.05).The se-rum levels of LBP and CXCL-10 in the bacterial infection group were higher than those in the non-bacterial in-fection group(P<0.05).The area under curves(AUCs)of serum LBP and CXCL-10 alone and in combina-tion for the diagnosis of acute upper respiratory tract bacterial infection in children were 0.779(95%CI:0.724-0.822),0.843(95%CI:0.796-0.898),0.906(95%CI:0.852-0.959),respectively.Compared with the non-bacterial infection group,the bacterial infection group had significantly higher proportions of family members with smoking,iron deficiency,and calcium deficiency,annual average times of antibacterial drug use,and serum LBP and CXCL-10 levels(P<0.05).Logistic multivariate regression analysis showed that the av-erage annual use of antibiotics ≥2 times(OR=2.305,95%CI:1.483-3.582),LBP≥104.26 ng/mL(OR=2.573,95%CI:1.446-4.578)and CXCL-10≥112.98 pg/mL(OR=1.208,95%CI:0.110-1.314)were the influencing factors of acute upper respiratory tract bacterial infection in children(P<0.05).Conclusion The elevated serum LBP and CXCL-10 levels are closely related to acute upper respiratory tract bacterial infection in children,which can be used as indicators for the differential diagnosis of acute upper respiratory tract bacte-rial infection,and the combination of the two has higher diagnostic efficiency.
8.Salidroside promotes proliferation and migration of human vascular endothelial cell line EA.hy926
Qingwen CAO ; Lin QI ; Bo YU ; Chenchen TIAN ; Haining YUAN ; Yue WANG
Basic & Clinical Medicine 2024;44(7):925-930
Objective To investigate the effect of salidroside(SAL)on the proliferation and migration of human vascular endothelial cell line EA.hy926.Methods The cells were divided into control group and test groups of 1,10 and 100 nmol/L SAL,10 nmol/L SAL+2 μg/mL avastin(vascular endothelial growth factor(VEGF)blocker)group,10 nmol/L SAL+2 μg/mL IgG(blocker negative control)group,10 nmol/L SAL+8 μg/mL avastin group,10 nmol/L SAL+8 μg/mL IgG group,10 μmol/L YC-1[hypoxia inducible factor-1α(HIF-1α)blocker]group and 10 μmol/L YC-1+10 nmol/L SAL group.The proliferation and migration of EA.hy926 cells were detected by MTS assay and Transwell cell migration experiments.RT-qPCR and Western blot were used to measure the gene and protein level of HIF-1α and VEGF.The luciferase report gene experiment was used to find the effect of SAL on HIF-1α transcription activity of EA.hy926 cells.The guanylate cyclase activator(YC-1)was used as a HIF-1α blocker to verify potential effect of SAL on the expression of VEGF through HIF-1α.Results SAL significantly promoted proliferation of EA.hy926 cells(P<0.05)and the proliferation promoting effect of SAL(10 nmol/L)was significantly reduced by the VEGF blocker bevacizumab avastin(2 μg/mL)(P<0.05).SAL significantly promoted migration of EA.hy926 cells(P<0.05),and this effect was significantly inhibited by avastin(8 μg/mL)(P<0.05).SAL increased the expression of HIF-1α and VEGF gene and protein,and promoted the transcription of HIF-1α(P<0.05).The level of HIF-1α and VEGF protein decreased by YC-1,a HIF-1α bloc-ker(P<0.05).Conclusions HIF-1α/VEGF pathway is potentially involved in SAL promoted proliferation and migration of EA.hy926 cells.
9.Application of CDO1 Gene Promoter Methylation in Tumors
Yu ZHOU ; Hong-Bo YU ; Yuan CAO ; Jun-Jie WANG
Progress in Biochemistry and Biophysics 2024;51(5):1043-1053
Cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinic acid to regulate cysteine accumulation in vivo. Elevated levels of cysteine have been shown to be cytotoxic and neurotoxic, and this is the first important step in the breakdown of cysteine metabolism in mammalian tissues. The human CDO1 gene is located on chromosome 5q23.2. Studies have shown that deletion or epigenetic silencing of this chromosomal region contributes to tumorigenesis. It is highly expressed in the liver and placenta, and weakly in the heart, brain and pancreas. CDO1 is a tumor suppressor gene (TSG) with a wide range of functions, which can be involved in various biological processes such as tumor cell proliferation, differentiation, apoptosis and iron death, thus affecting the tumor development. CDO1 is epigenetically regulated in human cancers, compared to normal tissues. The CDO1’s mRNA or protein expression levels were significantly down-regulated in tumor tissues, whereas promoter DNA methylation of the CDO1 gene usually accumulates with the progression of human cancers. Aberrant hypermethylation on the CDO1 promoter is a common event in tumor cells, which leads to transcriptional inactivation and silencing of the CDO1 gene. High frequency of methylation of CDO1 gene promoter methylation region in a variety of tumors including breast, oesophageal, lung, bladder, gastric and colorectal cancers. CDO1 gene promoter methylation levels reflect cancer progression and malignant tumorigenesis, which is a common molecular indicator explaining poor prognosis in human cancers. Treatment with 5-aza-2′-deoxycytidine (a drug that promotes demethylation) reactivated the CDO1 expression in most cancer cell lines, indicating that the transcriptional expression of CDO1 is closely correlated with its promoter methylation level, CDO1 gene promoter methylation and tumor progression have also received increasing attention from researchers. It was found that CDO1 gene promoter hypermethylation can be used as an early tumor marker for clinical aid diagnosis and helps to differentiate cancerous from benign diseases. It was also found that CDO1 promoter DNA methylation showed reliable tumor monitoring potential in human body fluids, and furthermore, the degree of CDO1 promoter methylation was strongly correlated with resistance to chemotherapy with tumor drugs, which would be helpful in evaluating the efficacy of chemotherapeutic drugs. Thus, CDO1, a common promoter methylation gene in human cancers, is closely associated with the development of a wide range of tumors and is one of the most promising candidate genes for assessing tumor-specific epigenetic changes. This article reviews the biological functions of CDO1 and its promoter DNA methylation in tumors, focusing on the mechanism of CDO1 DNA promoter methylation in tumors, with a view to providing theoretical guidance for the clinical diagnosis and treatment of tumors with CDO1 as a potential therapeutic target.
10.Toxicity evaluation of alcohol extract of Polygonum multiflorum based on 3D hepatocyte ball model
Hua-Long SU ; Xiang-Cao YAO ; Jia-Min CHEN ; Bo-Hong CEN ; Ping WANG ; Zong-Zheng CHEN ; Zhong-Yuan XU
The Chinese Journal of Clinical Pharmacology 2024;40(9):1272-1276
Objective To explore the toxicity of Polygonum multiflorum alcohol extract on 3D hepatospheres.Methods Variations in culture conditions and cell ratios were implemented,followed by the assessment of cell sphere diameter,density,and roundness,aiming to explore the optimal culture conditions.The 3D hepatocyte spheres were divided into control group and experimental-L,-M,-H groups.The experimental-L,-M,-H groups were treated with 0.25,1.00 and 2.50 mg·mL-1 Polygounm multiforum alcohol extract,and the control group was given the same amount of culture medium.The cell viability of the cell spheroids was tested by CellTiter-Glo reagent,the expression level of liver function related genes was detected by fluorescent quantitative polymerase chain reaction(RT-qRCR).The toxicity of cell spheres was detected by double fluorescent staining of living and dead cells.Results The ideal culture condition of cell sphere was 500 cells per micropore,and the cell ratio was HepG2-Huvec-LX-2=8∶1∶1.It displayed the values of 0.91±0.07 for circularity,0.91±0.02 for firmness,1.12±0.14 for aspect ratio,and(170.97±14.79)μm for diameter.On the 3rd,7th,10th and 14th days,the expression levels of albumin(ALB)mRNA were 1.00±0.02,0.96±0.02,0.54±0.07,0.52±0.07,and the expression levels of cytochrome P450 1A2(CYP1A2)mRNA were 1.00±0.10,2.15±0.16,2.45±0.33,1.30±0.03,respectively.The expression levels of multidrug resistance protein 2(MPR2)in the control group and the experimental-L,-M,-H groups were 1.00±0.31,1.38±0.24,1.48±0.06 and 1.90±0.08,respectively;spheroid viability were(98.19±0.49)%,(88.53±0.90)%,(71.60±2.91)%and(56.65±5.41)%.There were statistically significant differences in the above indexes between the experimental-L,-M,-H groups and the control group(all P<0.05).Conclusion The established hepatocyte sphere co-culture model showed varying degrees of expression of phase Ⅰ/Ⅱ drug metabolism enzymes,transporters,and liver cell specific marker molecule albumin and can be used to evaluate the toxicity of multiflorum multiflorum,which provides further reference for the clinical application of multiflorum multiflorum.

Result Analysis
Print
Save
E-mail