1.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Total Flavonoids from Cuscutae Semen Inhibit Depression in CUMS Mice via UCP2/TXNIP/NLRP3 Signaling Pathway
Andong SONG ; Guohua LI ; Bo YUAN ; Menghui JIA ; Zhantao LI ; Xiaoli WANG ; Long WANG ; Huiling FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):109-119
ObjectiveTo investigate the antidepressant effects and mechanisms of total flavonoids from Cuscutae Semen (TFCC) in the mouse model of chronic unpredictable mild stress (CUMS). MethodsFifty male 4-week-old ICR mice were randomized into five groups (n=10 per group): blank control, model, Cuscutae Semen decoction (10.2 g·kg-1·d-1), paroxetine (2.6 mg·kg-1·d-1), and TFCC (173.2 mg·kg-1·d-1). The other groups except the blank control group underwent chronic unpredictable mild stress (CUMS) for 4 weeks. Behavioral assessments were conducted post-modeling. Then, the model group received distilled water (10 mL·kg-1·d-1), while treatment groups were administrated with respective agents via oral gavage (10 mL·kg-1) for 4 weeks. Depression-like behaviors were evaluated by the sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST). Hippocampal neuronal morphology was observed via hematoxylin-eosin staining, and apoptosis in the brain tissue was assessed via terminal- deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). Enzyme-linked immunosorbent assay (ELISA) was employed to measure the hippocampal levels of inflammatory cytokines [interleukin (IL)-1β, IL-6, and TNF-α)] and neurotransmitters [5-hydroxytryptamine (5-HT), dopamine (DA), and brain-derived neurotrophic factor (BDNF)], while the reactive oxygen species (ROS) levels were quantified via the DCFH-DA probe. Real-time PCR was performed to measure the mRNA levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated Speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), IL-1β, and inducible nitric oxide synthase (iNOS). Western blot was employed to evaluate the protein levels of NLRP3, ASC, Caspase-1, uncoupling protein 2 (UCP2), and thioredoxin-interacting protein (TXNIP). ResultsCompared with the blank control group, the model group exhibited weight loss (P<0.01), reduced sucrose preference (P<0.01), prolonged immobility time in FST and TST (P<0.01), neuron disarrangement with nuclear pyknosis in hippocampal CA3 region, increased apoptosis in the brain tissue, elevated levels of IL-1β, IL-6, and TNF-α (P<0.01), declined levels of 5-HT, DA, and BDNF (P<0.01), increased ROS accumulation (P<0.01), upregulated mRNA levels of NLRP3, ASC, Caspase-1, IL-1β, and iNOS (P<0.01), down-regulated protein level of UCP2 (P<0.01), and up-regulated protein levels of NLRP3, ASC, Caspase-1, and TXNIP (P<0.01). Compared with the model group, the interventions restored sucrose preference (P<0.01), shortened immobility time (P<0.01), repaired hippocampal neuronal structure, reduced apoptosis, lowered the levels of inflammatory cytokines (P<0.01), restored the levels of neurotransmitters (P<0.01), alleviated ROS accumulation (P<0.01), downregulated the mRNA levels of NLRP3, ASC, Caspase-1, IL-1β, and iNOS (P<0.01), upregulated the protein level of UCP2 (P<0.01), and reduced the protein levels of NLRP3, ASC, Caspase-1, and TXNIP (P<0.01). Moreover, TFCC outperformed Cuscutae Semen decoction in ameliorating depressive behaviors. TFCC excelled in neuronal repair, neurotransmitter regulation, anti-inflammatory effects, and modulation of the UCP2/TXNIP/NLRP3 pathway (P<0.05). ConclusionTFCC modulates the hippocampal UCP2/TXNIP/NLRP3 pathway to inhibit inflammasome activation, reduce oxidative stress, restore neurotransmitters, thus suppressing neuronal apoptosis and promoting the rearrangement and morphology recovery of hippocampal cells. It outperforms Cuscutae Semen decoction in the antidepressant efficacy.
7.Total Flavonoids from Cuscutae Semen Inhibit Depression in CUMS Mice via UCP2/TXNIP/NLRP3 Signaling Pathway
Andong SONG ; Guohua LI ; Bo YUAN ; Menghui JIA ; Zhantao LI ; Xiaoli WANG ; Long WANG ; Huiling FU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):109-119
ObjectiveTo investigate the antidepressant effects and mechanisms of total flavonoids from Cuscutae Semen (TFCC) in the mouse model of chronic unpredictable mild stress (CUMS). MethodsFifty male 4-week-old ICR mice were randomized into five groups (n=10 per group): blank control, model, Cuscutae Semen decoction (10.2 g·kg-1·d-1), paroxetine (2.6 mg·kg-1·d-1), and TFCC (173.2 mg·kg-1·d-1). The other groups except the blank control group underwent chronic unpredictable mild stress (CUMS) for 4 weeks. Behavioral assessments were conducted post-modeling. Then, the model group received distilled water (10 mL·kg-1·d-1), while treatment groups were administrated with respective agents via oral gavage (10 mL·kg-1) for 4 weeks. Depression-like behaviors were evaluated by the sucrose preference test (SPT), forced swimming test (FST), and tail suspension test (TST). Hippocampal neuronal morphology was observed via hematoxylin-eosin staining, and apoptosis in the brain tissue was assessed via terminal- deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL). Enzyme-linked immunosorbent assay (ELISA) was employed to measure the hippocampal levels of inflammatory cytokines [interleukin (IL)-1β, IL-6, and TNF-α)] and neurotransmitters [5-hydroxytryptamine (5-HT), dopamine (DA), and brain-derived neurotrophic factor (BDNF)], while the reactive oxygen species (ROS) levels were quantified via the DCFH-DA probe. Real-time PCR was performed to measure the mRNA levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated Speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific proteinase-1 (Caspase-1), IL-1β, and inducible nitric oxide synthase (iNOS). Western blot was employed to evaluate the protein levels of NLRP3, ASC, Caspase-1, uncoupling protein 2 (UCP2), and thioredoxin-interacting protein (TXNIP). ResultsCompared with the blank control group, the model group exhibited weight loss (P<0.01), reduced sucrose preference (P<0.01), prolonged immobility time in FST and TST (P<0.01), neuron disarrangement with nuclear pyknosis in hippocampal CA3 region, increased apoptosis in the brain tissue, elevated levels of IL-1β, IL-6, and TNF-α (P<0.01), declined levels of 5-HT, DA, and BDNF (P<0.01), increased ROS accumulation (P<0.01), upregulated mRNA levels of NLRP3, ASC, Caspase-1, IL-1β, and iNOS (P<0.01), down-regulated protein level of UCP2 (P<0.01), and up-regulated protein levels of NLRP3, ASC, Caspase-1, and TXNIP (P<0.01). Compared with the model group, the interventions restored sucrose preference (P<0.01), shortened immobility time (P<0.01), repaired hippocampal neuronal structure, reduced apoptosis, lowered the levels of inflammatory cytokines (P<0.01), restored the levels of neurotransmitters (P<0.01), alleviated ROS accumulation (P<0.01), downregulated the mRNA levels of NLRP3, ASC, Caspase-1, IL-1β, and iNOS (P<0.01), upregulated the protein level of UCP2 (P<0.01), and reduced the protein levels of NLRP3, ASC, Caspase-1, and TXNIP (P<0.01). Moreover, TFCC outperformed Cuscutae Semen decoction in ameliorating depressive behaviors. TFCC excelled in neuronal repair, neurotransmitter regulation, anti-inflammatory effects, and modulation of the UCP2/TXNIP/NLRP3 pathway (P<0.05). ConclusionTFCC modulates the hippocampal UCP2/TXNIP/NLRP3 pathway to inhibit inflammasome activation, reduce oxidative stress, restore neurotransmitters, thus suppressing neuronal apoptosis and promoting the rearrangement and morphology recovery of hippocampal cells. It outperforms Cuscutae Semen decoction in the antidepressant efficacy.
8.Complex associations among modifiable determinants of circadian syndrome among employed people in southwestern China.
Shujuan YANG ; Peng JIA ; Lei ZHANG ; Yuchen LI ; Peng YU ; Jiqi YANG ; Sihan WANG ; Honglian ZENG ; Bo YANG ; Bin YU
Chinese Medical Journal 2025;138(21):2804-2812
BACKGROUND:
Circadian syndrome (CircS) may be closely linked to lifestyle, psychological, and occupational factors, but evidence is lacking. This study aimed to explore complex associations between lifestyle, psychological and occupational factors and CircS among employed people in southwestern China.
METHODS:
In this study, network analysis was used to identify complex associations between lifestyle, psychological and occupational factors and CircS in employed people from the Chinese Cohort of Working Adults (CCWA). The centrality of each variable was estimated by strength centrality index, which was calculated by the sum of edge weights connected to the variable. Bridge in the network was identified as the variables in the top 80 th percentile of overall bridge strength, which was defined as the most strongly connected variables across lifestyle, psychological and occupational factors and CircS. The differences were assessed in network structures between subgroups divided by the median score of the variable with the strongest bridge strengthen.
RESULTS:
Among 31,105 participants from CCWA, 5213 (16.76%) had CircS. In the constructed network, anxiety (edge weights: 0.28), smoking (edge weights: 0.15), drinking (edge weights: 0.10), perceived noise at work (edge weights: 0.08), and implicit health attitude (edge weights: -0.02) were directly related to CircS, with 83.31% of the variance for CircS explained by these neighboring factors. Anxiety was the most central variable (strength centrality: 1.20) in the network and the strongest bridge (bridge strength: 0.84) connecting all domains of variables. A stronger association between anxiety and CircS was observed in the network of participants with more severe anxiety (edge weight: 0.23) than those with less severe anxiety (edge weight: 0.03).
CONCLUSION
Anxiety had the strongest association with CircS and was the central factor with the highest strength centrality, also the bridge with the highest bridge strength in the network.
Humans
;
Male
;
Female
;
Adult
;
China
;
Middle Aged
;
Life Style
;
Chronobiology Disorders/epidemiology*
9.International risk signal prioritization principles: comparison and implications for scientific regulation of traditional Chinese medicine.
Rui ZHENG ; Shuo LIU ; Shi-Jia WANG ; He-Rong CUI ; Hai-Bo SONG ; Hong-Cai SHANG
China Journal of Chinese Materia Medica 2025;50(1):273-277
Signal detection is a critical task in drug safety regulation. However, it inevitably generates irrelevant or false signals, posing challenges for resource allocation by marketing authorization holders. To reasonably assess these signals, different countries have established various principles for prioritizing the evaluation of risk signals. This study systematically compares these principles and finds that the U.S. Food and Drug Administration(FDA) focuses on practical issues, such as identifying drug confusion or drug interactions. However, China's Good Pharmacovigilance Practices and the European Medicines Agency(EMA) emphasize a comprehensive evaluation framework. The Council for International Organizations of Medical Sciences(CIOMS) emphasizes the consistency of multiple data sources, highlighting the reliability of signal evaluation. China practices a multidisciplinary approach combining traditional Chinese and western medicine, and the risk signals related to traditional Chinese medicine(TCM) have unique characteristics, including complex components, cumulative toxicity, specific theoretical foundations, and drug interactions. The different priorities in risk signal evaluation principles across countries suggest that China should strengthen clinical trial research, emphasize corroboration with evidence of multiple sources, and pay particular attention to the risks of drug interactions in the TCM regulatory science. Establishing the risk signal prioritization principles that align with the characteristics of TCM enables more precise and efficient scientific regulation of TCM.
Humans
;
Medicine, Chinese Traditional/standards*
;
China
;
Drugs, Chinese Herbal/adverse effects*
;
United States
;
United States Food and Drug Administration
10.New strategy and method in traditional Chinese medicine compatibility for detoxification based on component-target-effect interaction.
Zhao-Fang BAI ; Wei SHI ; Yuan GAO ; Jia-Bo WANG ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2025;50(4):853-859
The safety of traditional Chinese medicine(TCM) has always been taken very seriously, and rich and valuable theories and experiences have been developed to ensure the safe and precise use of TCM in clinical practices. In recent years, the cognitive theory of toxicity of TCM, has undergone a profound change. TCM is characterized by the existence of intrinsic toxicity, idiosyncratic toxicity, and indirect toxicity related to organic factors. Therefore, the traditional theories and experiences of TCM, which focus on the prevention and control of intrinsic toxicity, fail to be used for the development of risk prevention and control countermeasures for newly discovered TCM with idiosyncratic toxicity and indirect toxicity. Accordingly, based on the toxicity classification and mechanism characteristics of TCM, this paper proposed a new strategy and method in TCM compatibility for detoxification based on componenttarget-effect interaction. The strategy based on component-target-effect interaction is to carry out TCM compatibility for detoxification by blocking the occurrence of drug-mediated damage and promoting damage repair through component interactions, target interactions,and/or effect interactions. Based on this theory, the paper established a strategy for TCM compatibility that aligned with the cognitive theory of toxicity of TCM, so as to achieve safe and precise use of TCM in clinical practices. The strategy based on component-targeteffect interaction has been exemplarily applied to the development of countermeasures to reduce the toxicity of TCM, including Polygonum Multiflorum, Epimedii Folium, and Psoraleae Fructus, and a new mechanism of Glycyrrhizae Radix et Rhizoma to " harmonize various medicines and detoxify myriad poisons" was illustrated, providing a scientific basis for the safe and precise use of TCM in clinical practice. This paper explained the scientific connotation, application forms, and application examples of componenttarget-effect interaction, aiming to provide a theoretical and methodological basis for guaranteeing the precise use of TCM in clinical practice and innovate the theories and methods of TCM compatibility for detoxification.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Animals
;
Drug-Related Side Effects and Adverse Reactions/prevention & control*

Result Analysis
Print
Save
E-mail