1.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
2.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
3.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
4.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
5.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.
6.Invasive Ductal Carcinoma Within a Borderline Phyllodes Tumor Associated With Extensive Ductal Carcinoma In Situ: A Case Report
Wang Hyon KIM ; Kyung Hee LEE ; Hwa Eun OH ; Bo Kyoung SEO ; Min Sun BAE
Investigative Magnetic Resonance Imaging 2024;28(4):202-206
Phyllodes tumors of the breast are rare biphasic fibroepithelial neoplasms that may coexist with breast carcinomas. Herein, we report a case of invasive ductal carcinoma (IDC) within a borderline phyllodes tumor accompanied by extensive ductal carcinoma in situ (DCIS) in the same breast. A 72-year-old woman presented with a palpable lump in the right breast.Mammography showed an oval mass associated with segmental microcalcifications, and breast ultrasound (US) revealed a 2.3 cm oval mass and an associated non-mass lesion. Based on US-guided core needle biopsy, the initial biopsy result of the non-mass lesion suggested DCIS; however, the mass was diagnosed as a fibroepithelial lesion. Preoperative dynamic contrast-enhanced magnetic resonance imaging showed a rim-enhancing oval mass with areas of T2 hyperintensity, accompanied by segmental non-mass enhancement. The mass was highly suspicious for malignancy and was considered imaging-pathology discordant.Subsequently, the patient underwent mastectomy. Histopathological examination of the surgical specimens confirmed a borderline phyllodes tumor with an IDC within the tumor and an extensive intraductal component. The invasive carcinoma component was triplenegative breast cancer. This case highlights the diagnostic challenges of identifying coexisting carcinomas within phyllodes tumors and emphasizes the necessity for increased awareness among radiologists regarding this possibility.
7.Unusual US Findings of Diffuse Large B-Cell Lymphoma of the Breast:A Case Report
Kyung Eun LEE ; Ok Hee WOO ; Chung Yeul KIM ; Kyu Ran CHO ; Bo Kyoung SEO
Journal of the Korean Society of Radiology 2024;85(2):415-420
Lymphoma is an uncommon type of breast malignancy, with low prevalence. The ultrasonographic findings of breast lymphoma have been described as nonspecific. Breast lymphoma most commonly appears as a solitary hypoechoic mass on US, and usually shows hypervascularity on color Doppler US. Herein, we report an unusual case of breast lymphoma that presented as multiple bilateral hyperechoic nodules on US.
8.Invasive Ductal Carcinoma Within a Borderline Phyllodes Tumor Associated With Extensive Ductal Carcinoma In Situ: A Case Report
Wang Hyon KIM ; Kyung Hee LEE ; Hwa Eun OH ; Bo Kyoung SEO ; Min Sun BAE
Investigative Magnetic Resonance Imaging 2024;28(4):202-206
Phyllodes tumors of the breast are rare biphasic fibroepithelial neoplasms that may coexist with breast carcinomas. Herein, we report a case of invasive ductal carcinoma (IDC) within a borderline phyllodes tumor accompanied by extensive ductal carcinoma in situ (DCIS) in the same breast. A 72-year-old woman presented with a palpable lump in the right breast.Mammography showed an oval mass associated with segmental microcalcifications, and breast ultrasound (US) revealed a 2.3 cm oval mass and an associated non-mass lesion. Based on US-guided core needle biopsy, the initial biopsy result of the non-mass lesion suggested DCIS; however, the mass was diagnosed as a fibroepithelial lesion. Preoperative dynamic contrast-enhanced magnetic resonance imaging showed a rim-enhancing oval mass with areas of T2 hyperintensity, accompanied by segmental non-mass enhancement. The mass was highly suspicious for malignancy and was considered imaging-pathology discordant.Subsequently, the patient underwent mastectomy. Histopathological examination of the surgical specimens confirmed a borderline phyllodes tumor with an IDC within the tumor and an extensive intraductal component. The invasive carcinoma component was triplenegative breast cancer. This case highlights the diagnostic challenges of identifying coexisting carcinomas within phyllodes tumors and emphasizes the necessity for increased awareness among radiologists regarding this possibility.
9.Unusual US Findings of Diffuse Large B-Cell Lymphoma of the Breast:A Case Report
Kyung Eun LEE ; Ok Hee WOO ; Chung Yeul KIM ; Kyu Ran CHO ; Bo Kyoung SEO
Journal of the Korean Society of Radiology 2024;85(2):415-420
Lymphoma is an uncommon type of breast malignancy, with low prevalence. The ultrasonographic findings of breast lymphoma have been described as nonspecific. Breast lymphoma most commonly appears as a solitary hypoechoic mass on US, and usually shows hypervascularity on color Doppler US. Herein, we report an unusual case of breast lymphoma that presented as multiple bilateral hyperechoic nodules on US.
10.Invasive Ductal Carcinoma Within a Borderline Phyllodes Tumor Associated With Extensive Ductal Carcinoma In Situ: A Case Report
Wang Hyon KIM ; Kyung Hee LEE ; Hwa Eun OH ; Bo Kyoung SEO ; Min Sun BAE
Investigative Magnetic Resonance Imaging 2024;28(4):202-206
Phyllodes tumors of the breast are rare biphasic fibroepithelial neoplasms that may coexist with breast carcinomas. Herein, we report a case of invasive ductal carcinoma (IDC) within a borderline phyllodes tumor accompanied by extensive ductal carcinoma in situ (DCIS) in the same breast. A 72-year-old woman presented with a palpable lump in the right breast.Mammography showed an oval mass associated with segmental microcalcifications, and breast ultrasound (US) revealed a 2.3 cm oval mass and an associated non-mass lesion. Based on US-guided core needle biopsy, the initial biopsy result of the non-mass lesion suggested DCIS; however, the mass was diagnosed as a fibroepithelial lesion. Preoperative dynamic contrast-enhanced magnetic resonance imaging showed a rim-enhancing oval mass with areas of T2 hyperintensity, accompanied by segmental non-mass enhancement. The mass was highly suspicious for malignancy and was considered imaging-pathology discordant.Subsequently, the patient underwent mastectomy. Histopathological examination of the surgical specimens confirmed a borderline phyllodes tumor with an IDC within the tumor and an extensive intraductal component. The invasive carcinoma component was triplenegative breast cancer. This case highlights the diagnostic challenges of identifying coexisting carcinomas within phyllodes tumors and emphasizes the necessity for increased awareness among radiologists regarding this possibility.

Result Analysis
Print
Save
E-mail