1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.A Case of Multiple Cranial Neuropathies Caused by Anaplastic Lymphoma Kinase-Negative Anaplastic Large Cell Lymphoma
Hyeop OH ; Su Mi SEONG ; Eo Jin KIM ; Bo Hae KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):121-126
Multiple cranial neuropathies (MCN) can be caused by various etiologies, such as autoimmune diseases, neurovascular diseases, tumors, or infections. Among the various etiologies of MCN, malignant lymphoma is a major cause. Anaplastic lymphoma kinase-negative anaplastic large cell lymphoma (ALK-ALCL) is an extremely rare subtype of T-cell lymphoma that exhibits aggressive behavior, particularly when affecting the central nervous system (CNS). The rarity of ALK-ALCL often leads to a relative delay in diagnosis compared to other types of lymphoma. We experienced a patient with MCN, for whom malignant lymphoma was suspected and diagnosed with ALK-ALCL, which simultaneously involved multiple cranial nerves, bilateral submandibular glands (SMGs), and the stomach within a relatively short time. Herein, we report our diagnostic experience of ALK-ALCL, along with a literature review.
3.Comparison of the Gut Microbiota of Preterm Infants Born before 32-Week Gestation with Feeding Intolerance
Bo Kyeong JIN ; Hyunsu KIM ; Cho Ae LEE ; Hye-Rim KIM
Neonatal Medicine 2025;32(1):21-29
Purpose:
Feeding intolerance (FI) is a prevalent clinically sequential condition in preterm infants. To clarify its relationship with the gut microbiota, we compared microbial diversity and taxonomic composition at 2 and 4 weeks of age in infants born before 32 weeks of gestation.
Methods:
Between August 2021 and December 2022, we prospectively enrolled infants who delivered before 32 weeks of gestation and were admitted to the neonatal intensive care unit at CHA Bundang Medical Center. Forty-four preterm infants were grouped based on the presence (n=16) or absence (n=28) of FI. Fecal samples were obtained at 2 and 4 weeks after birth and analyzed using 16S rRNA gene sequencing to determine microbial profiles.
Results:
Microbial α-diversity and β-diversity did not differ significantly between groups at either time point. At the genus level, Staphylococcus was significantly more abundant in the FI group than in the feeding tolerance group at 2 weeks postnatal age (P=0.016). Linear discriminant analysis effect size revealed that Staphylococcus, Pseudomonas, and Escherichia were markedly enriched in the FI group at all time points.
Conclusion
Early colonization by potentially pathogenic genera, particularly Staphylococcus, may precede the development of FI in preterm infants. These findings highlight the potential microbial composition associated with FI and may provide preliminary insights for future microbiome-targeted research in neonatal care.
4.A Case of Multiple Cranial Neuropathies Caused by Anaplastic Lymphoma Kinase-Negative Anaplastic Large Cell Lymphoma
Hyeop OH ; Su Mi SEONG ; Eo Jin KIM ; Bo Hae KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2025;68(3):121-126
Multiple cranial neuropathies (MCN) can be caused by various etiologies, such as autoimmune diseases, neurovascular diseases, tumors, or infections. Among the various etiologies of MCN, malignant lymphoma is a major cause. Anaplastic lymphoma kinase-negative anaplastic large cell lymphoma (ALK-ALCL) is an extremely rare subtype of T-cell lymphoma that exhibits aggressive behavior, particularly when affecting the central nervous system (CNS). The rarity of ALK-ALCL often leads to a relative delay in diagnosis compared to other types of lymphoma. We experienced a patient with MCN, for whom malignant lymphoma was suspected and diagnosed with ALK-ALCL, which simultaneously involved multiple cranial nerves, bilateral submandibular glands (SMGs), and the stomach within a relatively short time. Herein, we report our diagnostic experience of ALK-ALCL, along with a literature review.
5.Comparison of the Gut Microbiota of Preterm Infants Born before 32-Week Gestation with Feeding Intolerance
Bo Kyeong JIN ; Hyunsu KIM ; Cho Ae LEE ; Hye-Rim KIM
Neonatal Medicine 2025;32(1):21-29
Purpose:
Feeding intolerance (FI) is a prevalent clinically sequential condition in preterm infants. To clarify its relationship with the gut microbiota, we compared microbial diversity and taxonomic composition at 2 and 4 weeks of age in infants born before 32 weeks of gestation.
Methods:
Between August 2021 and December 2022, we prospectively enrolled infants who delivered before 32 weeks of gestation and were admitted to the neonatal intensive care unit at CHA Bundang Medical Center. Forty-four preterm infants were grouped based on the presence (n=16) or absence (n=28) of FI. Fecal samples were obtained at 2 and 4 weeks after birth and analyzed using 16S rRNA gene sequencing to determine microbial profiles.
Results:
Microbial α-diversity and β-diversity did not differ significantly between groups at either time point. At the genus level, Staphylococcus was significantly more abundant in the FI group than in the feeding tolerance group at 2 weeks postnatal age (P=0.016). Linear discriminant analysis effect size revealed that Staphylococcus, Pseudomonas, and Escherichia were markedly enriched in the FI group at all time points.
Conclusion
Early colonization by potentially pathogenic genera, particularly Staphylococcus, may precede the development of FI in preterm infants. These findings highlight the potential microbial composition associated with FI and may provide preliminary insights for future microbiome-targeted research in neonatal care.
6.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.
7.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
8.Clinical practice guidelines for cervical cancer: an update of the Korean Society of Gynecologic Oncology Guidelines
Ji Geun YOO ; Sung Jong LEE ; Eun Ji NAM ; Jae Hong NO ; Jeong Yeol PARK ; Jae Yun SONG ; So-Jin SHIN ; Bo Seong YUN ; Sung Taek PARK ; San-Hui LEE ; Dong Hoon SUH ; Yong Beom KIM ; Keun Ho LEE
Journal of Gynecologic Oncology 2025;36(1):e70-
We describe the updated Korean Society of Gynecologic Oncology (KSGO) practice guideline for the management of cervical cancer, version 5.1. The KSGO announced the fifth version of its clinical practice guidelines for the management of cervical cancer in March 2024. The selection of the key questions and the systematic reviews were based on data available up to December 2022. Between 2023 and 2024, substantial findings from large-scale clinical trials and new advancements in cervical cancer research remarkably emerged. Therefore, based on the existing version 5.0, we updated the guidelines with newly accumulated clinical data and added 4 new key questions reflecting the latest insights in the field of cervical cancer. For each question, recommendation was formulated with corresponding level of evidence and grade of recommendation, all established through expert consensus.
9.PDK4 expression and tumor aggressiveness in prostate cancer
Eun Hye LEE ; Yun-Sok HA ; Bo Hyun YOON ; Minji JEON ; Dong Jin PARK ; Jiyeon KIM ; Jun-Koo KANG ; Jae-Wook CHUNG ; Bum Soo KIM ; Seock Hwan CHOI ; Hyun Tae KIM ; Tae-Hwan KIM ; Eun Sang YOO ; Tae Gyun KWON
Investigative and Clinical Urology 2025;66(3):227-235
Purpose:
Prostate cancer ranks as the second most common cancer in men globally, representing a significant cause of cancer-related mortality. Metastasis, the spread of cancer cells from the primary site to distant organs, remains a major challenge in managing prostate cancer. Pyruvate dehydrogenase kinase 4 (PDK4) is implicated in the regulation of aerobic glycolysis, emerging as a potential player in various cancers. However, its role in prostate cancer remains unclear. This study aims to analyze PDK4 expression in prostate cancer cells and human samples, and to explore the gene's clinical significance.
Materials and Methods:
PDK4 expression was detected in cell lines and human tissue samples. Migration ability was analyzed using Matrigel-coated invasion chambers. Human samples were obtained from the Kyungpook National University Chilgok Hospital.
Results:
PDK4 expression was elevated in prostate cancer cell lines compared to normal prostate cells, with particularly high levels in DU145 and LnCap cell lines. PDK4 knockdown in these cell lines suppressed their invasion ability, indicating a potential role of PDK4 in prostate cancer metastasis. Furthermore, our results revealed alterations in epithelial-mesenchymal transition markers and downstream signaling molecules following PDK4 suppression, suggesting its involvement in the modulation of invasion-related pathways. Furthermore, PDK4 expression was increased in prostate cancer tissues, especially in castration-resistant prostate cancer, compared to normal prostate tissues, with PSA and PDK4 expression showing a significantly positive correlation.
Conclusions
PDK4 expression in prostate cancer is associated with tumor invasion and castration status. Further validation is needed to demonstrate its effectiveness as a therapeutic target.
10.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.

Result Analysis
Print
Save
E-mail