1.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
2.Association of leukocyte telomere length with the risk of digestive diseases: A large-scale cohort study.
Hongqun YANG ; Lanlan CHEN ; Yahui LIU
Chinese Medical Journal 2025;138(1):60-67
BACKGROUND:
Leukocyte telomere length (LTL) shortening, a biomarker of telomere attrition, has been linked to multiple diseases. However, the relationship between LTL and digestive diseases remains uncertain. This study aimed to investigate the association between LTL and the risk of digestive diseases.
METHODS:
A cohort analysis of over 500,000 participants from the UK Biobank (UKB) between 2006 and 2021 was conducted to estimate the associations of LTL with more than 90 common digestive diseases. LTL was quantified using multiplex quantitative polymerase chain reaction, and cases of each disease were determined according to inpatient and primary care data. Multivariable Cox proportional hazards regression analysis was used to evaluate the associations of LTL with the risk of digestive diseases. Furthermore, such associations were also evaluated after stratification by sex and ethnicity.
RESULTS:
After a mean follow-up time of 11.8 years, over 20 International Classification of Diseases, 10th Revision ( ICD-10 ) codes were showed to be associated with telomere attrition. LTL shortening is associated with an increased risk of several digestive diseases, including gastroesophageal reflux disease (K21: hazard ratio [HR] = 1.30, 95% confidence interval [95% CI]: 1.19-1.42), esophageal ulcer (K221: HR = 1.81, 95% CI: 1.22-2.71), Barrett's esophagus (K227: HR = 1.58, 95% CI: 1.14-2.17), gastritis (K29: HR = 1.39, 95% CI: 1.26-1.52), duodenal ulcer (K26: HR = 1.55, 95% CI: 1.14-2.12), functional dyspepsia (K30X: HR = 1.36, 95% CI: 1.06-1.69), non-alcoholic fatty liver disease (NAFLD) (K760: HR = 1.39, 95% CI: 1.09-1.78), liver cirrhosis (K74: HR = 4.73, 95% CI: 3.27-6.85), cholangitis (K830: HR = 2.55, 95% CI: 1.30-5.00), and hernia (K43: HR = 1.50, 95% CI: 1.17-1.94; K44: HR = 1.29, 95% CI: 1.17-1.42). The risk of rectal polyps (K621: HR = 0.77, 95% CI: 0.63-0.92) decreased per unit shortening of LTL.
CONCLUSIONS
This study suggests that LTL shortening is associated with an increased risk of most digestive diseases except for rectal polyps. These findings may provide some clues for understanding the pathogenesis of digestive diseases.
Humans
;
Male
;
Female
;
Middle Aged
;
Cohort Studies
;
Leukocytes/metabolism*
;
Telomere/genetics*
;
Proportional Hazards Models
;
Adult
;
Digestive System Diseases/genetics*
;
Aged
;
Risk Factors
;
Telomere Shortening
3.Tissue-resident peripheral helper T cells foster hepatocellular carcinoma immune evasion by promoting regulatory B-cell expansion.
Haoyuan YU ; Mengchen SHI ; Xuejiao LI ; Zhixing LIANG ; Kun LI ; Yongwei HU ; Siqi LI ; Mingshen ZHANG ; Yang YANG ; Yang LI ; Linsen YE
Chinese Medical Journal 2025;138(17):2148-2158
BACKGROUND:
Peripheral helper T (T PH ) cells are uniquely positioned within pathologically inflamed non-lymphoid tissues to stimulate B-cell responses and antibody production. However, the phenotype, function, and clinical relevance of T PH cells in hepatocellular carcinoma (HCC) are currently unknown.
METHODS:
Blood, tumor, and peritumoral liver tissue samples from 39 HCC patients (Sep 2016-Aug 2017) and 101 HCC patients (Sep 2011-Dec 2012) at the Third Affiliated Hospital of Sun Yat-sen University were used. Flow cytometry was used to quantify the expression, phenotype, and function of T PH cells. Log-rank tests were performed to evaluate disease-free survival and overall survival in samples from 39 patients and 101 patients with HCC. T PH cells, CD19 + B cells, and T follicular helper (T FH ) cells were cultured separately in vitro or isolated from C57/B6L mice in vivo for functional assays.
RESULTS:
T PH cells highly infiltrated tumor tissues, which was correlated with tumor size, early recurrence, and shorter survival time. The tumor-infiltrated T PH cells showed a unique ICOS hi CXCL13 + IL-21 - MAF + BCL-6 - phenotype and triggered naïve B-cell differentiation into regulatory B cells. Triggering programmed cell death protein 1 (PD-1) induced the production of C-X-C motif chemokine ligand 13 (CXCL13) by T PH cells, which then suppressed tumor-specific immunity and promoted disease progression.
CONCLUSION
Our study reveals a novel regulatory mechanism of T PH cell-regulatory B-cell-mediated immunosuppression and provides an important perspective for determining the balance between the differentiation of protumorigenic T PH cells and that of antitumorigenic T FH cells in the HCC microenvironment.
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Humans
;
T-Lymphocytes, Helper-Inducer/metabolism*
;
Animals
;
Mice
;
Male
;
Female
;
Mice, Inbred C57BL
;
Middle Aged
;
B-Lymphocytes, Regulatory/metabolism*
;
Flow Cytometry
;
Interleukin-21
;
Aged
;
Chemokine CXCL13/metabolism*
4.FLT3 ligand regulates expansion of regulatory T-cells induced by regulatory dendritic cells isolated from gut-associated lymphoid tissues through the Notch pathway.
Na LI ; Jingwei MAO ; Haiying TANG ; Xiaoyan TAN ; Jian BI ; Hao WU ; Xiuli CHEN ; Yingde WANG
Chinese Medical Journal 2025;138(13):1595-1606
BACKGROUND:
Regulatory dendritic cell (DCreg) subset exhibits a unique capacity for inducing immune tolerance among the variety subsets of dendritic cells (DCs) within gut-associated lymphoid tissues (GALTs). Fms-like tyrosine kinase 3 ligand (FLT3L) is involved in the differentiation of DCregs and the subsequent expansion of regulatory T-cells (Tregs) mediated by DCregs, though the precise mechanism remains poorly understood. This study aimed to explore the expansion mechanism of Treg induced by DCreg and the role of FLT3L in this process.
METHODS:
DCregs were distinguished from other DC subsets isolated from GALTs of BALB/c mice through a mixed lymphocyte reaction assay. The functions and mechanisms by which FLT3L promoted Treg expansion via DCregs were investigated in vitro through co-culture experiments involving DCregs and either CD4 + CD25 - T-cells or CD4 + CD25 + T-cells. Additionally, an in vivo experiment was conducted using a dextran sulfate sodium (DSS)-induced colitis model in mice.
RESULTS:
CD103 + CD11b + DC exhibited DCreg-like functionality and was identified as DCreg for subsequent investigation. Analysis of Foxp3 + Treg percentages within a co-culture system of CD4 + CD25 - T-cells and DCregs, with or without FLT3L, demonstrated the involvement of the FLT3/FLT3L axis in driving the differentiation of precursor T-cells into Foxp3 + Tregs induced by DCregs. Cell migration and co-culture assays revealed that the FLT3/FLT3L axis enhanced DCreg migration toward Tregs via the Rho pathway. Additionally, it was observed that DCregs could promote Treg proliferation through the Notch pathway, as inhibition of Notch signaling by DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester) suppressed Treg expansion within the co-culture system of DCregs and CD4 + T-cells or CD4 + CD25 + T-cells. Furthermore, the FLT3/FLT3L axis influenced JAG1 expression in DCregs, indirectly modulating Treg expansion. In vivo experiments further established that FLT3L promoted DCreg expansion and restored Treg balance in DSS-induced colitis models, thereby ameliorating colitis symptoms in mice.
CONCLUSION
The FLT3/FLT3L axis is integral to the maintenance of DCreg function in Treg expansion.
Animals
;
T-Lymphocytes, Regulatory/immunology*
;
Dendritic Cells/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Membrane Proteins/metabolism*
;
Receptors, Notch/metabolism*
;
Lymphoid Tissue/metabolism*
;
Signal Transduction/physiology*
;
Coculture Techniques
;
Flow Cytometry
5.The regulation and mechanism of apolipoprotein A5 on myocardial lipid deposition.
Xiao-Jie YANG ; Jiang LI ; Jing-Yuan CHEN ; Teng-Teng ZHU ; Yu-Si CHEN ; Hai-Hua QIU ; Wen-Jie CHEN ; Xiao-Qin LUO ; Jun LUO
Acta Physiologica Sinica 2025;77(1):35-46
The current study aimed to clarify the roles of apolipoprotein A5 (ApoA5) and milk fat globule-epidermal growth factor 8 (Mfge8) in regulating myocardial lipid deposition and the regulatory relationship between them. The serum levels of ApoA5 and Mfge8 in obese and healthy people were compared, and the obesity mouse model induced by the high-fat diet (HFD) was established. In addition, primary cardiomyocytes were purified and identified from the hearts of suckling mice. The 0.8 mmol/L sodium palmitate treatment was used to establish the lipid deposition cardiomyocyte model in vitro. ApoA5-overexpressing adenovirus was used to observe its effects on cardiac function and lipids. The expressions of the fatty acid uptake-related molecules and Mfge8 on transcription or translation levels were detected. Co-immunoprecipitation was used to verify the interaction between ApoA5 and Mfge8 proteins. Immunofluorescence was used to observe the co-localization of Mfge8 protein with ApoA5 or lysosome-associated membrane protein 2 (LAMP2). Recombinant rMfge8 was added to cardiomyocytes to investigate the regulatory mechanism of ApoA5 on Mfge8. The results showed that participants in the simple obesity group had a significant decrease in serum ApoA5 levels (P < 0.05) and a significant increase in Mfge8 levels (P < 0.05) in comparison with the healthy control group. The adenovirus treatment successfully overexpressed ApoA5 in HFD-fed obese mice and palmitic acid-induced lipid deposition cardiomyocytes, respectively. ApoA5 reduced the weight of HFD-fed obese mice (P < 0.05), shortened left ventricular isovolumic relaxation time (IVRT), increased left ventricular ejection fraction (LVEF), and significantly reduced plasma levels of triglycerides (TG) and cholesterol (CHOL) (P < 0.05). In myocardial tissue and cardiomyocytes, the overexpression of ApoA5 significantly reduced the deposition of TG (P < 0.05), transcription of fatty acid translocase (FAT/CD36) (P < 0.05), fatty acid-binding protein (FABP) (P < 0.05), and fatty acid transport protein (FATP) (P < 0.05), and protein expression of Mfge8 (P < 0.05), while the transcription levels of Mfge8 were not significantly altered (P > 0.05). In vitro, the Mfge8 protein was captured using ApoA5 as bait protein, indicating a direct interaction between them. Overexpression of ApoA5 led to an increase in co-localization of Mfge8 with ApoA5 or LAMP2 in cardiomyocytes under lipid deposition status. On this basis, exogenous added recombinant rMfge8 counteracted the improvement of lipid deposition in cardiomyocytes by ApoA5. The above results indicate that the overexpression of ApoA5 can reduce fatty acid uptake in myocardial cells under lipid deposition status by regulating the content and cellular localization of Mfge8 protein, thereby significantly reducing myocardial lipid deposition and improving cardiac diastolic and systolic function.
Animals
;
Humans
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Obesity/physiopathology*
;
Male
;
Apolipoprotein A-V/blood*
;
Lipid Metabolism/physiology*
;
Milk Proteins/blood*
;
Myocardium/metabolism*
;
Diet, High-Fat
;
Antigens, Surface/physiology*
;
Mice, Inbred C57BL
;
Cells, Cultured
;
Female
6.The mechanism and research progress of T lymphocyte-mediated immune response in cardiac fibrosis remodeling.
Yong PENG ; Wen-Yue GAO ; Di QIN
Acta Physiologica Sinica 2025;77(1):95-106
This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases. In addition, CD8+ T cells regulate the activation and polarization of macrophages, promote the secretion of granzyme B, induce cardiomyocyte apoptosis, and aggravate cardiac fibrosis post-myocardial infarction. Considering the limitation of cytokine modulation in clinical therapy of heart failure, targeting T-cell co-stimulatory molecules emerges as a promising strategy for treating pathologic cardiac remodeling. Future research will explore chimeric antigen receptor modified T cells (CAR-T cells) technology and targeted regulation of Treg cells quantity and phenotype, for both of which have the potential to become effective methods for treating heart disease.
Humans
;
Fibrosis
;
T-Lymphocytes, Regulatory/immunology*
;
Ventricular Remodeling/immunology*
;
Myocardium/immunology*
;
Animals
;
Th17 Cells/immunology*
;
Interleukin-10/metabolism*
;
Th1 Cells/immunology*
;
Th2 Cells/immunology*
7.Advances in role and mechanism of traditional Chinese medicine active ingredients in regulating balance of Th1/Th2 and Th17/Treg immune responses in asthma patients.
Ya-Sheng DENG ; Lan-Hua XI ; Yan-Ping FAN ; Wen-Yue LI ; Yong-Hui LIU ; Zhao-Bing NI ; Ming-Chan WEI ; Jiang LIN
China Journal of Chinese Materia Medica 2025;50(4):1000-1021
Asthma is a chronic inflammatory disease involving multiple inflammatory cells and cytokines. Its pathogenesis is complex, involving various cells and cytokines. Traditional Chinese medicine(TCM) theory suggests that the pathogenesis of asthma is closely related to the dysfunction of internal organs such as the lungs, spleen, and kidneys. In contrast, modern immunological studies have revealed the central role of T helper 1(Th1)/T helper 2(Th2) and T helper 17(Th17)/regulatory T(Treg) cellular immune imbalance in the pathogenesis of asthma. Th1/Th2 imbalance is manifested as hyperfunction of Th2 cells, which promotes the synthesis of immunoglobulin E(IgE) and the activation of eosinophil granulocytes, leading to airway hyperresponsiveness and inflammation.Meanwhile, Th17/Treg imbalance exacerbates the inflammatory response in the airways, further contributing to asthma pathology.Currently, therapeutic strategies for asthma are actively exploring potential targets for regulating the balance of Th1/Th2 and Th17/Treg immune responses. These targets include cytokines, transcription factors, key proteins, and non-coding RNAs. Precisely regulating the expression and function of these targets can effectively modulate the activation and differentiation of immune cells. In recent years,traditional Chinese medicine active ingredients have shown unique potential and prospects in the field of asthma treatment. Based on this, the present study systematically summarizes the efficacy and specific mechanisms of TCM active ingredients in treating asthma by regulating Th1/Th2 and Th17/Treg immune balance through literature review and analysis. These active ingredients, including flavonoids, terpenoids, polysaccharides, alkaloids, and phenolic acids, exert their effects through various mechanisms, such as inhibiting the activation of inflammatory cells, reducing the release of cytokines, and promoting the normal differentiation of immune cells. This study aims to provide a solid foundation for the widespread application and in-depth development of TCM in asthma treatment and to offer new ideas for clinical research and drug development of asthma.
Asthma/genetics*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Th2 Cells/drug effects*
;
Th17 Cells/drug effects*
;
T-Lymphocytes, Regulatory/drug effects*
;
Th1 Cells/drug effects*
;
Animals
;
Cytokines/immunology*
;
Medicine, Chinese Traditional
8.Mechanism of Yiguanjian in regulating Th17/Treg balance for treating dry eye in rats.
Xiao-Long ZHANG ; Yuan ZHONG ; Qing-Hua PENG ; Jun PENG
China Journal of Chinese Materia Medica 2025;50(16):4668-4678
This study investigated the therapeutic effects of Yiguanjian on dry eye in rats and its mechanisms involving the T helper cell 17(Th17)/regulatory T cell(Treg) balance. The rat model of dry eye was established by administrating 0.2% benzalkonium chloride solution in eye drops. After successful modeling, the rats were treated with Yiguanjian for 4 consecutive weeks. The Schirmer test was carried out to assess the lacrimal gland function, corneal fluorescence staining to detect corneal injury, hematoxylin-eosin staining to observe corneal histopathology, enzyme-linked immunosorbent assay to measure serum levels of interleukin(IL)-6, IL-8, IL-17A, IL-21, and tumor necrosis factor-α(TNF-α), RT-qPCR to analyze mRNA levels of retinoic acid receptor-related orphan receptor gamma t(RORγt) and forkhead box protein p3(Foxp3) in the corneal tissue, immunofluorescence double staining to evaluate RORγt and Foxp3 expression in the lacrimal gland tissue, and Western blot to quantify the protein levels of signal transducer and activator of transcription 3(STAT3), phosphorylated STAT3(p-STAT3), Janus kinase 2(Jak2), phosphorylated Jak2(p-Jak2), RORγt, and Foxp3 in the corneal tissue. The results demonstrated that Yiguanjian increased tear secretion(P<0.01), alleviated corneal damage and pathological changes, and lowered the serum levels of IL-6, IL-8, IL-17A, IL-21, and TNF-α(P<0.05) in model rats. Additionally, Yiguanjian decreased the ratio of RORγt to Foxp3 in the corneal and lacrimal gland tissue(P<0.01), downregulated the protein levels of STAT3, Jak2, and RORγt(P<0.05), upregulated the protein level of Foxp3(P<0.05), and inhibited phosphorylation of STAT3 and Jak2(P<0.01). These findings indicate that Yiguanjian ameliorates ocular surface dysfunction in dry eye rats by restoring Th17/Treg balance in the corneal and lacrimal gland tissue and suppressing systemic inflammatory cytokine release, thus mitigating ocular surface inflammation.
Animals
;
Rats
;
T-Lymphocytes, Regulatory/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Th17 Cells/immunology*
;
Male
;
Rats, Sprague-Dawley
;
Dry Eye Syndromes/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/immunology*
;
Lacrimal Apparatus/immunology*
;
Humans
;
STAT3 Transcription Factor/immunology*
9.Deep overparameterized blood cell detection algorithm utilizing hybrid attention mechanisms.
Shuo ZHU ; Xukang ZHANG ; Zongyang WANG ; Rui JIANG ; Zhengda LIU
Journal of Biomedical Engineering 2025;42(5):936-944
To address the challenges in blood cell recognition caused by diverse morphology, dense distribution, and the abundance of small target information, this paper proposes a blood cell detection algorithm - the "You Only Look Once" model based on hybrid mixing attention and deep over-parameters (HADO-YOLO). First, a hybrid attention mechanism is introduced into the backbone network to enhance the model's sensitivity to detailed features. Second, the standard convolution layers with downsampling in the neck network are replaced with deep over-parameterized convolutions to expand the receptive field and improve feature representation. Finally, the detection head is decoupled to enhance the model's robustness for detecting abnormal cells. Experimental results on the Blood Cell Counting Dataset (BCCD) demonstrate that the HADO-YOLO algorithm achieves a mean average precision of 90.2% and a precision of 93.8%, outperforming the baseline YOLO model. Compared with existing blood cell detection methods, the proposed algorithm achieves state-of-the-art detection performance. In conclusion, HADO-YOLO offers a more efficient and accurate solution for identifying various types of blood cells, providing valuable technical support for future clinical diagnostic applications.
Algorithms
;
Humans
;
Blood Cells/cytology*
;
Blood Cell Count/methods*
;
Neural Networks, Computer
;
Deep Learning
;
Detection Algorithms
10.scPANDA: PAN-Blood Data Annotator with a 10-Million Single-Cell Atlas.
Chang-Xiao LI ; Can HUANG ; Dong-Sheng CHEN
Chinese Medical Sciences Journal 2025;40(1):68-87
OBJECTIVES:
Recent advancements in single-cell RNA sequencing (scRNA-seq) have revolutionized the study of cellular heterogeneity, particularly within the hematological system. However, accurately annotating cell types remains challenging due to the complexity of immune cells. To address this challenge, we develop a PAN-blood single-cell Data Annotator (scPANDA), which leverages a comprehensive 10-million-cell atlas to provide precise cell type annotation.
METHODS:
The atlas, constructed from data collected in 16 studies, incorporated rigorous quality control, preprocessing, and integration steps to ensure a high-quality reference for annotation. scPANDA utilizes a three-layer inference approach, progressively refining cell types from broad compartments to specific clusters. Iterative clustering and harmonization processes were employed to maintain cell type purity throughout the analysis. Furthermore, the performance of scPANDA was evaluated in three external datasets.
RESULTS:
The atlas was structured hierarchically, consisting of 16 compartments, 54 classes, 4,460 low-level clusters (pd_cc_cl_tfs), and 611 high-level clusters (pmid_cts). Robust performance of the tool was demonstrated in annotating diverse immune scRNA-seq datasets, analyzing immune-tumor coexisting clusters in renal cell carcinoma, and identifying conserved cell clusters across species.
CONCLUSIONS
scPANDA exemplifies effective reference mapping with a large-scale atlas, enhancing the accuracy and reliability of blood cell type identification.
Humans
;
Single-Cell Analysis/methods*
;
Sequence Analysis, RNA/methods*
;
Blood Cells

Result Analysis
Print
Save
E-mail