1.High mobility group protein B1(HMGB1) promotes myeloid dendritic cell maturation and increases Th17 cell/Treg cell ratio in patients with immune primary thrombocytopenia.
Qinzhi LI ; Dongsheng DUAN ; Xiujuan WANG ; Mingling SUN ; Ying LIU ; Xinyou WANG ; Lei WANG ; Wenxia FAN ; Mengting SONG ; Xinhong GUO
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):45-50
Objective This study investigated the regulatory effect of high mobility group protein B1 (HMGB1) in the peripheral blood of patients with primary immune thrombocytopenia (ITP) on myeloid dendritic cells (mDC) and Th17/regulatory T cells (Treg) balance. Methods The study enrolled 30 newly diagnosed ITP patients and 30 healthy controls.Flow cytometry was used to measure the proportion of mDC, Th17, and Treg cells in the peripheral blood of ITP patients and healthy controls. ELISA was conducted to quantify the serum levels of HMGB1, interleukin 6 (IL-6), IL-23, IL-17, and transforming growth factor β(TGF-β). The mRNA levels of retinoic acid-related orphan receptor γt(RORγt) and forehead box P3(FOXP3) were detected by real-time PCR. The correlation between the abovementioned cells, cytokines, and platelet count was assessed using Pearson linear correlation analysis. Results The proportion of Th17 cells and the expression levels of HMGB1, IL-6, IL-23, IL-17 and the level of RORγt mRNA in the peripheral blood of ITP patients were higher than those in healthy controls. However, the Treg cell proportion and TGF-β level were lower in ITP patients than those in healthy controls. In patients with ITP, the proportion of mDC and the level of FOXP3 mRNA did not show significant changes. The proportion of mDC cells was significantly correlated with the expression of IL-6 and IL-23. Moreover, the expression of HMGB1 showed a significant correlation with the expression of mDC, IL-6, IL-23, RORγt mRNA, and IL-17. Notably, both the proportion of mDC cells and the expression of HMGB1 were negatively correlated with platelet count. Conclusion The high expression of HMGB1 in peripheral blood of ITP patients may induce Th17/Treg imbalance by promoting the maturation of mDC and affecting the secretion of cytokines, thereby potentially playing a role in the immunological mechanism of ITP.
Humans
;
Th17 Cells/cytology*
;
HMGB1 Protein/genetics*
;
T-Lymphocytes, Regulatory/cytology*
;
Female
;
Male
;
Dendritic Cells/metabolism*
;
Adult
;
Middle Aged
;
Purpura, Thrombocytopenic, Idiopathic/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/genetics*
;
Young Adult
;
Interleukin-23/blood*
;
Interleukin-17/blood*
;
Interleukin-6/blood*
;
Forkhead Transcription Factors/genetics*
;
Myeloid Cells/cytology*
;
Aged
2.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
3.S1PR5 activation or overexpression enhances barrier function of mouse brain microvascular endothelial cells against OGD/R injury by modulating oxidative stress.
Jingxian WANG ; Zijing REN ; Peiyang ZHOU
Journal of Southern Medical University 2025;45(7):1451-1459
OBJECTIVES:
To investigate the role of sphingosine-1-phosphate receptor 5 (S1PR5) in modulating barrier function of mouse brain microvascular endothelial cells with oxygen-glucose deprivation and reoxygenation (OGD/R).
METHODS:
Mouse brain microvascular endothelial cells (bEnd.3) were exposed to OGD/R to induce barrier dysfunction following treatment with S1PR5-specific agonist A971432 or lentivirus-mediated transfection with a S1PR5-specific siRNA, a S1PR5-overexpressing plasmid, or their respective negative control sequences. The changes in viability and endothelial barrier permeability of the treated cells were evaluated with CCK-8 assay and FITC-dextran permeability assay; the levels of intracellular reactive oxygen species (ROS) and localization and expression levels of the proteins related with barrier function and oxidative stress were detected using immunofluorescence staining, DCFH-DA probe and Western blotting.
RESULTS:
S1PR5 activation obviously enhanced viability of bEnd.3 cells exposed to OGD/R (P<0.0001). Both activation and overexpression of S1PR5 reduced FITC-dextran leakage, while S1PR5 knockdown significantly increased FITC-dextran leakage in the exposed bEnd.3 cells. Activation and overexpression of S1PR5 both increased the cellular expressions of the barrier proteins ZO-1 and occludin, while S1PR5 knockdown produced the opposite effect. In cells exposed to OGD/R, ROS production was significantly reduced by S1PR5 activation and overexpression but increased following S1PR5 knockdown. Overexpression of S1PR5 obviously increased the expressions of the antioxidant proteins Nrf2, HO-1 and SOD2 in the exposed cells.
CONCLUSIONS
S1PR5 activation and overexpression significantly improve cell viability and reduce permeability of a mouse brain microvascular endothelial cell model of OGD/R, the mechanism of which may involve the reduction in ROS production and upregulation of the antioxidant proteins.
Animals
;
Mice
;
Oxidative Stress
;
Endothelial Cells/cytology*
;
Brain/blood supply*
;
Reactive Oxygen Species/metabolism*
;
Receptors, Lysosphingolipid/metabolism*
;
Sphingosine-1-Phosphate Receptors
;
Blood-Brain Barrier/metabolism*
;
Glucose
;
Cell Line
;
Oxygen/metabolism*
;
NF-E2-Related Factor 2/metabolism*
4.Research advances in relationship between biological clock and cardiovascular diseases.
Ting-Ting JIANG ; Shuang JI ; Guang-Rui YANG ; Li-Hong CHEN
Acta Physiologica Sinica 2019;71(5):783-791
Circadian rhythms widely exist in living organisms, and they are regulated by the biological clock. Growing evidence has shown that circadian rhythms are tightly related to the physiological function of the cardiovascular system, including blood pressure, heart rate, metabolism of cardiomyocytes, function of endothelial cells, and vasoconstriction and vasodilation. In addition, disruption of circadian rhythms has been considered as one of the important risk factors for cardiovascular diseases, such as myocardial infarction. This review summarizes the recent research advances in the relationship between circadian clock and cardiovascular diseases, hoping to improve treatment strategies for patients with cardiovascular diseases according to the theory of biological clock.
Blood Pressure
;
Cardiovascular Diseases
;
physiopathology
;
Circadian Clocks
;
Circadian Rhythm
;
Endothelial Cells
;
cytology
;
Heart Rate
;
Humans
;
Myocytes, Cardiac
;
metabolism
;
Vasoconstriction
;
Vasodilation
5.Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity.
Bo JING ; Chunxue ZHANG ; Xianjun LIU ; Liqiang ZHOU ; Jiping LIU ; Yinan YAO ; Juehua YU ; Yuteng WENG ; Min PAN ; Jie LIU ; Zuolin WANG ; Yao SUN ; Yi Eve SUN
Protein & Cell 2018;9(3):298-309
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.
Animals
;
Astrocytes
;
cytology
;
metabolism
;
Blood-Brain Barrier
;
cytology
;
metabolism
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
genetics
;
metabolism
;
Female
;
Glycosylation
;
Male
;
Mice
;
Proteoglycans
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
6.CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells.
Ping WANG ; Zunpeng LIU ; Xiaoqian ZHANG ; Jingyi LI ; Liang SUN ; Zhenyu JU ; Jian LI ; Piu CHAN ; Guang-Hui LIU ; Weiqi ZHANG ; Moshi SONG ; Jing QU
Protein & Cell 2018;9(11):945-965
Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.
Blood Vessels
;
cytology
;
metabolism
;
CRISPR-Cas Systems
;
Embryonic Stem Cells
;
cytology
;
Gene Knockout Techniques
;
Homeostasis
;
Humans
;
NF-kappa B
;
deficiency
;
metabolism
;
Transcription Factor RelA
;
deficiency
;
metabolism
7.Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.
Yohanes Widodo WIROHADIDJOJO ; Arief BUDIYANTO ; Hardyanto SOEBONO
Yonsei Medical Journal 2016;57(5):1282-1285
To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
Blood Platelets/*cytology/*metabolism
;
Cell Movement/radiation effects
;
Cell Proliferation/radiation effects
;
Cells, Cultured
;
Collagen/metabolism
;
Fibrin/*metabolism
;
Fibroblasts/*cytology/metabolism/*radiation effects
;
Humans
;
Skin/*cytology
;
Time Factors
;
Ultraviolet Rays/*adverse effects
8.Analysis of Factors Influencing Peripheral Blood Stem Cell Collection of 151 Lymphoma Cases.
Wei SUN ; Min GAO ; Rong XIE ; Yu-Qin YANG ; Xin-Yang HU ; Chun-Li ZHANG ; Xin-Yu DAI
Journal of Experimental Hematology 2016;24(2):416-421
OBJECTIVETo analyze the influential factors related to mobilization and collection of stem cells so as to improve the collection efficiency of autologous peripheral stem cell transplantation in lymphoma patients.
METHODSThe peripheral blood stem cell collection data of 151 cases of lymphoma in our hospital was analyzed retrospectively. The relationship between the harvested CD34(+) stem cells and some factors, such as age, sex, height, weight, histological type, staging, mobilization programs, collecting days, blood transfusion, time and duration of chemotherapy, was analyzed.
RESULTSThe single factor analysis showed that sex, height, weight, histological type, staging, mobilization program, collecting days, blood transfusion were not significantly associated with CD34(+) stem cells collection, respectively. Age (r = -0.248, P = 0.002), duration of sick and cycles of chemotherapy were significantly associated with CD34(+) cell collection. At the age older than 50 years, the collected CD34(+) cell number decreased significantly; and at the age older than 60 years, the CD34(+) cell number was greatly reduced; CD34(+) cells non-significantly correlated with peripheral blood WBC (r = 0.053, P = 0.527), but significantly with the percentage of mononuclear cells (r = 0.260, P = 0.002) and the absolute value of mononuclear cells (r = 0.338, P = 0.00003) .
CONCLUSIONThe patients less than 60 years old, fewer chemotherapy cycles, shorter duration time or PB mononuclear cells between (2-6) × 10(9)/L may contribute to the better mobilization and collection of peripheral blood stem cells.
Age Factors ; Antigens, CD34 ; metabolism ; Blood Transfusion ; Cell Count ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells ; cytology ; Humans ; Lymphoma ; therapy ; Peripheral Blood Stem Cell Transplantation ; Retrospective Studies ; Transplantation, Autologous
9.A novel CD36 mutation T538C (Trp180Arg) results in CD36 deficiency and establishment of a genotyping method for the novel mutation based on sequence-specific primer PCR.
Lilan LI ; Baoren HE ; Yan ZHOU ; Zhoulin ZHONG ; Haiyan LI ; Fang LU ; Jinlian LIU ; Weidong SHEN ; Hengcong LI ; Lihong JIANG ; Guoguang WU
Chinese Journal of Medical Genetics 2016;33(5):619-624
OBJECTIVETo explore the molecular basis for a CD36 deficiency individual and distribution of CD36 gene mutation in Guangxi population.
METHODSA female individual was studied. CD36 phenotype was detected by monoclonal antibody immobilization of platelet antigens assay (MAIPA) and flow cytometry (FCM). The coding regions of the CD36 gene were sequenced. A DNA-based polymerase chain reaction-sequence specific primer (PCR-SSP) assay was used to verify the identified mutation. Cell lines expressing the mutant and wild-type CD36[CD36(MT) and CD36(WT)] were established, with the expression of CD36 determined by Western blotting. The distribution of CD36 gene mutation was investigated among 1010 unrelated individuals with the PCR-SSP assay.
RESULTSBoth MAIPA and FCM assays showed that the patient had type II CD36 deficiency. DNA sequencing showed that she has carried a heterozygous mutation T538C (Trp180Arg) in the exon 6 of CD36. Sequencing of cDNA clone confirmed that there was a nucleotide substitution at position 538 (538T>C). Western blotting also confirmed that the CD36 did not express on the CD36(MT) cell line that expressed the 538C mutant, but did express on the CD36(WT) cell line. The novel CD36 mutation T538C was further verified with 100% concordance of genotyping results by DNA-based PCR-SSP assay and 1010 unrelated individuals. No CD36 538C allele was detected among the 1010 individuals.
CONCLUSIONThis study has identified a novel CD36 mutation T538C(Trp180Arg)(GenBank: HM217022.1), and established a genotyping method for the novel sequence-specific primer PCR. The novel mutation is rare in Guangxi and can cause type II CD36 deficiency.
Base Sequence ; Blood Platelet Disorders ; genetics ; Blood Platelets ; cytology ; metabolism ; Blotting, Western ; CD36 Antigens ; genetics ; metabolism ; Cells, Cultured ; DNA Mutational Analysis ; DNA Primers ; genetics ; Exons ; genetics ; Female ; Flow Cytometry ; Fluorescent Antibody Technique ; Genetic Diseases, Inborn ; genetics ; Genotype ; Genotyping Techniques ; methods ; Humans ; Middle Aged ; Monocytes ; cytology ; metabolism ; Mutation, Missense ; Polymerase Chain Reaction ; methods
10.Galpha12 Protects Vascular Endothelial Cells from Serum Withdrawal-Induced Apoptosis through Regulation of miR-155.
Hyeon Jeong LEE ; Eun Jig LEE ; Miran SEO
Yonsei Medical Journal 2016;57(1):247-253
PURPOSE: Apoptosis of vascular endothelial cells is a type of endothelial damage that is associated with the pathogenesis of cardiovascular diseases such as atherosclerosis. Heterotrimeric GTP-binding proteins (G proteins), including the alpha 12 subunit of G protein (Galpha12), have been found to modulate cellular proliferation, differentiation, and apoptosis of numerous cell types. However, the role of Galpha12 in the regulation of apoptosis of vascular cells has not been elucidated. We investigated the role of Galpha12 in serum withdrawal-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its underlying mechanisms. MATERIALS AND METHODS: HUVECs were transfected with Galpha12 small-interfering RNA (siRNA) to knockdown the endogenous Galpha12 expression and were serum-deprived for 6 h to induce apoptosis. The apoptosis of HUVECs were assessed by Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of microRNAs were analyzed by quantitative real-time PCR. RESULTS: Knockdown of Galpha12 with siRNA augmented the serum withdrawal-induced apoptosis of HUVECs and markedly repressed the expression of microRNA-155 (miR-155). Serum withdrawal-induced apoptosis of HUVECs was inhibited by the overexpression of miR-155 and increased significantly due to the inhibition of miR-155. Notably, the elevation of miR-155 expression prevented increased apoptosis of Galpha12-deficient HUVECs. CONCLUSION: From these results, we conclude that Galpha12 protects HUVECs from serum withdrawal-induced apoptosis by retaining miR-155 expression. This suggests that Galpha12 might play a protective role in vascular endothelial cells by regulating the expression of microRNAs.
*Apoptosis
;
Atherosclerosis/*blood/genetics/immunology
;
Cell Proliferation
;
Endothelial Cells/*metabolism
;
GTP-Binding Protein alpha Subunits, G12-G13/*genetics
;
Gene Expression Profiling
;
Gene Expression Regulation
;
Human Umbilical Vein Endothelial Cells/cytology
;
Humans
;
MicroRNAs/*metabolism
;
Protective Agents
;
*RNA, Small Interfering
;
Real-Time Polymerase Chain Reaction
;
*Transfection

Result Analysis
Print
Save
E-mail