1.Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway.
Chinese Journal of Cellular and Molecular Immunology 2025;41(1):9-16
Objective To study the impacts of curcumin on the proliferation, migration and cisplatin (DDP) resistance of bladder cancer cells by regulating the liver kinase B1-AMP activated protein kinase-microtubule-associated protein 1 light chain 3 (LKB1-AMPK-LC3) signaling pathway. Methods Human bladder cancer cell line T24 was cultured in vitro, and its DDP resistant T24/DDP cells were induced by cisplatin (DDP). After treating T24 and T24/DDP cells with different concentrations of curcumin, the optimal concentration of curcumin was screened by MTT assay. T24 cells were randomly grouped into control group, curcumin group, metformin group, and combination group of curcumin and metformin. After treatment with curcumin and LKB1-AMPK activator metformin, the proliferation, autophagy, migration, and apoptosis of T24 cells in each group were detected by MTT assay, monodansylcadavrine (MDC) fluorescence staining, cell scratch assay, and flow cytometry, respectively. Western blot was used to detect the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24 cells of each group. T24/DDP cells were randomly assigned into control group, curcumin group, metformin group, and combination group of curcumin and metformin. Cells were treated with curcumin and metformin according to grouping and treated with different concentrations of DDP simultaneously. Then, the effect of curcumin on the DDP resistance coefficient of T24/DDP cells was detected by MTT assay. T24/DDP cells were randomly grouped into control group, DDP group, combination groups of DDP and curcumin, DDP and metformin, DDP, curcumin and metformi. After treatment with DDP, curcumin, and metformin, the proliferation, autophagy, migration, apoptosis, drug resistance, and the expression of proteins related to LKB1-AMPK-LC3 signaling pathway in T24/DDP cells of each group were detected with the same methods. Results Compared with the control group, the activity of T24 cells, relative number of autophagosomes, migration rate, Phosphorylated-LKB1 (p-LKB1)/LKB1, Phosphorylated-AMPK (p-AMPK)/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the curcumin group were lower, and the apoptosis rate of T24 cells was higher; the changes in various indicators in the metformin group were opposite to those in the curcumin group. Compared with the curcumin group, the activity of T24 cells, relative number of autophagosomes, migration rate, p-LKB1/LKB1, p-AMPK/AMPK, LC3II/LC3I, and the DDP resistance coefficient of T24/DDP cells in the combination group of curcumin and metformin were higher, and the apoptosis rate of T24 cells was lower. Compared with the control group, there were no obvious changes in various indicators of T24/DDP cells in the DDP group. Compared with the control group and DDP group, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-glycoprotein (P-gp) protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP and curcumin were lower, and the apoptosis rate of T24/DDP cells was higher; the changes in the above indicators in the combination group of DDP and metformin were opposite to those in the combination group of DDP and curcumin. Compared with the combination group of DDP and curcumin, the viability of T24/DDP cells, relative number of autophagosomes, migration rate, P-gp protein expression, p-LKB1/LKB1, p-AMPK/AMPK, and LC3II/LC3I in the combination group of DDP, curcumin and metformin were higher, and the apoptosis rate of T24/DDP cells was lower. Conclusion Curcumin can reduce the activity of LKB1-AMPK-LC3 signaling pathway, thereby inhibiting autophagy, proliferation and migration of bladder cancer cells, promoting their apoptosis, and weakening their resistance to DDP.
Humans
;
Cisplatin/pharmacology*
;
Curcumin/pharmacology*
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
;
Protein Serine-Threonine Kinases/genetics*
;
AMP-Activated Protein Kinases/metabolism*
;
Drug Resistance, Neoplasm/drug effects*
;
Urinary Bladder Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/drug effects*
;
AMP-Activated Protein Kinase Kinases
;
Microtubule-Associated Proteins/metabolism*
;
Apoptosis/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Metformin/pharmacology*
;
Autophagy/drug effects*
2.O-GlcNAcylated YTHDF2 promotes bladder cancer progression by regulating the tumor suppressor gene PER1 via m6A modification.
Li WANG ; Da REN ; Zeqiang CAI ; Wentao HU ; Yuting CHEN ; Xuan ZHU
Journal of Central South University(Medical Sciences) 2025;50(5):827-839
OBJECTIVES:
Bladder cancer is a common malignancy with high incidence and poor prognosis. N6-methyladenosine (m6A) modification is widely involved in diverse physiological processes, among which the m6A recognition protein YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked N-acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (PER1), thereby promoting bladder cancer cell proliferation.
METHODS:
Expression of YTHDF2 in bladder cancer was predicted using The Cancer Genome Atlas (TCGA). Twenty paired bladder cancer and adjacent normal tissues were collected at the clinical level. Normal bladder epithelial cells (SV-HUC-1) and bladder cancer cell lines (T24, 5637, EJ-1, SW780, BIU-87) were examined by quantitative real-time PCR (RT-qPCR), Western blotting, and immunohistochemistry for expression of YTHDF2, PER1, and proliferation-related proteins [proliferating cell nuclear antigen (PCNA), minichromosome maintenance complex component 2 (MCM2), Cyclin D1]. YTHDF2 was silenced in 5637 and SW780 cells, and cell proliferation was assessed by Cell Counting Kit-8 (CCK-8), colony formation, and EdU assays. Bioinformatics was used to predict glycosylation sites of YTHDF2, and immunoprecipitation (IP) was performed to detect O-GlcNAc modification levels of YTHDF2 in tissues and cells. Bladder cancer cells were treated with DMSO, OSMI-1 (O-GlcNAc inhibitor), or Thiamet G (O-GlcNAc activator), followed by cycloheximide (CHX), to assess YTHDF2 ubiquitination by IP. YTHDF2 knockdown and Thiamet G treatment were further used to evaluate PER1 mRNA stability, PER1 m6A modification, and cell proliferation. TCGA was used to predict PER1 expression in tissues; SRAMP predicted potential PER1 m6A sites. Methylated RNA immunoprecipitation (MeRIP) assays measured PER1 m6A modification. Finally, the effects of knocking down YTHDF2 and PER1 on 5637 and SW780 cell proliferation were assessed.
RESULTS:
YTHDF2 expression was significantly upregulated in bladder cancer tissues compared with adjacent tissues (mRNA: 2.5-fold; protein: 2-fold), which O-GlcNAc modification levels increased 3.5-fold (P<0.001). YTHDF2 was upregulated in bladder cancer cell lines, and its knockdown suppressed cell viability (P<0.001), downregulated PCNA, MCM2, and CyclinD1 (all P<0.05), reduced colony numbers 3-fold (P<0.01), and inhibited proliferation. YTHDF2 exhibited elevated O-GlcNAc modification in cancer cells. OSMI-1 reduced YTHDF2 protein stability (P<0.01) and enhanced ubiquitination, while Thiamet G exerted opposite effects (P<0.001). Thiamet G reversed the proliferation-suppressive effects of YTHDF2 knockdown, promoting cell proliferation (P<0.01) and upregulating PCNA, MCM2, and CyclinD1 (all P<0.05). Mechanistically, YTHDF2 targeted PER1 via m6A recognition, promoting PER1 mRNA degradation. Rescue experiments showed that PER1 knockdown reversed the inhibitory effect of YTHDF2 knockdown on cell proliferation, upregulated PCNA, MCM2, and Cyclin D1 (all P<0.05), and promoted bladder cancer cell proliferation (P<0.001).
CONCLUSIONS
O-GlcNAc modification YTHDF2 promotes bladder cancer development by downregulating the tumor suppressor gene PER1 through m6A-mediated post-transcriptional regulation.
Humans
;
Urinary Bladder Neoplasms/metabolism*
;
RNA-Binding Proteins/genetics*
;
Cell Proliferation
;
Cell Line, Tumor
;
Disease Progression
;
Acetylglucosamine/metabolism*
;
Adenosine/metabolism*
;
Gene Expression Regulation, Neoplastic
;
Genes, Tumor Suppressor
3.A pan-cancer analysis of PYCR1 and its predictive value for chemotherapy and immunotherapy responses in bladder cancer.
Yutong LI ; Xingyu SONG ; Ruixu SUN ; Xuan DONG ; Hongwei LIU
Journal of Southern Medical University 2025;45(4):880-892
OBJECTIVES:
To explore the potential of pyrroline-5-carboxylate reductase 1 (PYCR1) as a pan-cancer biomarker and investigate its expression, function, and clinical significance in bladder cancer (BLCA).
METHODS:
Bioinformatics analysis was conducted to evaluate the associations of PYCR1 with prognosis, immune microenvironment remodeling, tumor mutation burden (TMB), and microsatellite instability (MSI) in cancer patients. Using the TCGA-BLCA dataset, univariate and multivariate regression analyses were performed to assess the potential of PYCR1 as an independent prognostic risk factor for BLCA, and a clinical decision model was constructed. The IMvigor210 cohort was utilized to evaluate the potential of PYCR1 for independently predicting the efficacy of immunotherapy. The pRRophetic was employed to screen candidate chemotherapeutic agents for treating BLCA with high PYCR1 expression. The CMap-XSum algorithm and molecular docking techniques were used to explore and validate small molecule inhibitors of PYCR1.
RESULTS:
A high expression of PYCR1 was significantly associated with poor prognosis, immune cell infiltration, TMB and MSI in various tumors (r>0.3). PYCR1 was overexpressed in BLCA, and high PYCR1 expression was closely related to poor prognosis in BLCA patients (HR: 1.14, 95% CI: 1.02-1.68, P=0.006). The IC50 of the anti-cancer drugs cetuximab, 5-fluorouracil, and doxorubicin increased significantly in BLCA cell lines with high PYCR1 expressions (P<0.0001).
CONCLUSIONS
High PYCR1 expression is an independent risk factor for poor prognosis in BLCA patients and can serve as a significant indicator for clinical decision-making as well as a marker for predicting sensitivity to chemotherapeutic agents and the efficacy of immunotherapy.
Humans
;
Urinary Bladder Neoplasms/genetics*
;
Immunotherapy
;
Prognosis
;
Pyrroline Carboxylate Reductases/metabolism*
;
Biomarkers, Tumor/genetics*
;
delta-1-Pyrroline-5-Carboxylate Reductase
;
Microsatellite Instability
;
Tumor Microenvironment
;
Mutation
;
Computational Biology
;
Molecular Docking Simulation
4.Apelin promotes proliferation, migration, and angiogenesis in bladder cancer by activating the FGF2/FGFR1 pathway.
Wei SU ; Houhua LAI ; Xin TANG ; Qun ZHOU ; Yachun TANG ; Hao FU ; Xuancai CHEN
Journal of Southern Medical University 2025;45(6):1289-1296
OBJECTIVES:
To investigate the role of apelin in regulating proliferation, migration and angiogenesis of bladder cancer cells and the possible regulatory mechanism.
METHODS:
GEO database was used to screen the differentially expressed genes in bladder cancer tissues and cells. Bladder cancer and paired adjacent tissues were collected from 60 patients for analysis of apelin expressions in relation to clinicopathological parameters. In cultured bladder cancer J82 cells and human umbilical vein endothelial cells (HUVECs), the effects of transfection with an apelin-overexpressing plasmid or specific siRNAs targeting apelin, fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 1 (FGFR1) on proliferation and migration of J82 cells and tube formation in HUVECs were examined using plate cloning assay, Transwell assay, and angiogenesis assay; the changes in FGF2 expression and FGFR1 phosphorylation were detected using Western blotting.
RESULTS:
The expression level of apelin was significantly higher in bladder cancer tissues than adjacent tissues, and bladder cancer cell lines (T24 and J82) also expressed higher mRNA and protein levels of apelin than SV-HUC-1 cells. Apelin expression level in bladder cancer tissues was correlated with tumor invasion, distant metastasis and advanced TNM stages. Apelin knockdown significantly suppressed proliferation and migration of J82 cells and decreased the total angiogenic length of HUVECs. In contrast, apelin overexpression significantly promoted proliferation and migration and enhanced FGFR1 phosphorylation in J82 cells, and increased the total angiogenesis length in HUVECs, but this effects were effectively mitigated by transfection of the cells with FGF2 siRNA or FGFR1 siRNA.
CONCLUSIONS
High expression of apelin promotes J82 cell proliferation and migration and HUVEC angiogenesis by promoting activation of the FGF2/FGFR1 pathway.
Humans
;
Urinary Bladder Neoplasms/blood supply*
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Cell Proliferation
;
Cell Movement
;
Fibroblast Growth Factor 2/metabolism*
;
Neovascularization, Pathologic
;
Human Umbilical Vein Endothelial Cells
;
Cell Line, Tumor
;
Signal Transduction
;
Apelin
;
Intercellular Signaling Peptides and Proteins/genetics*
;
Female
;
Male
;
Angiogenesis
5.An accurate diagnostic approach for urothelial carcinomas based on novel dual methylated DNA markers in small-volume urine.
Yucai WU ; Di CAI ; Jian FAN ; Chang MENG ; Shiming HE ; Zhihua LI ; Lianghao ZHANG ; Kunlin YANG ; Aixiang WANG ; Xinfei LI ; Yicong DU ; Shengwei XIONG ; Mancheng XIA ; Tingting LI ; Lanlan DONG ; Yanqing GONG ; Liqun ZHOU ; Xuesong LI
Chinese Medical Journal 2024;137(2):232-234
6.Construction of a prediction model for prognosis of bladder cancer based on the expression of ion channel-related genes.
Dianfeng ZHANG ; Guicao YIN ; Shengqi ZHENG ; Qiu CHEN ; Yifan LI
Journal of Zhejiang University. Medical sciences 2023;52(4):499-509
OBJECTIVES:
To construct a prediction model for the prognosis of bladder cancer patients based on the expression of ion channel-related genes (ICRGs).
METHODS:
ICRGs were obtained from the existing researches. The clinical information and the expression of ICRGs mRNA in breast cancer patients were obtained from the Cancer Genome Atlas database. Cox regression analysis, minimum absolute shrinkage and selection operator regression analysis were used to screen breast cancer prognosis related genes, which were verified by immunohistochemistry and qRT-PCR. The risk scoring equation for predicting the prognosis of patients with bladder cancer was constructed, and the patients were divided into high-risk group and low-risk group according to the median risk score. Immune cell infiltration was compared between the two groups. Kaplan-Meier survival curve and receiver operating characteristic (ROC) curve were used to evaluate the accuracy and clinical application value of the risk scoring equation. The factors related to the prognosis of bladder cancer patients were analyzed by univariate and multivariate Cox regression, and a nomogram for predicting the prognosis of bladder cancer patients was constructed.
RESULTS:
By comparing the expression levels of ICRGs in bladder cancer tissues and normal bladder tissues, 73 differentially expressed ICRGs were dentified, of which 11 were related to the prognosis of bladder cancer patients. Kaplan-Meier survival curve suggested that the risk score based on these 11 genes was negatively correlated with the prognosis of patients. The area under the ROC curve of the risk score for predicting the prognosis of patients at 1, 3 and 5 year was 0.634, 0.665 and 0.712, respectively. Stratified analysis showed that the ICRGs-based risk score performed well in predicting the prognosis of patients with American Joint Committee on Cancer (AJCC) stage Ⅲ-Ⅳ bladder cancer (P<0.05), while it had a poor value in predicting the prognosis of patients with AJCC stage Ⅰ-Ⅱ (P>0.05). There were significant differences in the infiltration of plasma cells, activated natural killer cells, resting mast cells and M2 macrophages between the high-risk group and the low-risk group. Cox regression analysis showed that risk score, smoking, age and AJCC stage were independently associated with the prognosis of patients with bladder cancer (P<0.05). The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1, 3 and 5 year overall survival rate of bladder cancer patients.
CONCLUSIONS
The study shows the potential value of ICRGs in the prognostic risk assessment of bladder cancer patients. The constructed prognostic nomogram based on ICRGs risk score has high accuracy in predicting the prognosis of bladder cancer patients.
Humans
;
Female
;
Prognosis
;
Urinary Bladder Neoplasms/genetics*
;
Urinary Bladder
;
Ion Channels
;
Breast Neoplasms
7.Effects of lncRNA-UCA1 targeting miR-204-5p on the proliferation, migration, apoptosis and immune escape of endometrial carcinoma cells.
Shuang JING ; Yan FENG ; Xiao Li HE ; Yue WANG
Chinese Journal of Oncology 2023;45(1):56-63
Objective: To investigate the effect of long non-coding RNA urothelial carcinoma-associated 1 (UCA1) gene on the proliferation, migration, apoptosis and immune escape of endometrial cancer cells and its molecular mechanism. Methods: Endometrial cancer tissues and adjacent normal tissues of patients with endometrioid adenocarcinoma who underwent total or partial hysterectomy in Henan Provincial People's Hospital from 2017 to 2019 were collected. The expressions of UCA1 and miR-204-5p were detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and the cell proliferation, migration and apoptosis were detected by cell counting kit 8 (CCK8) method, Transwell method, flow cytometry, and dual-luciferase reporter assay was used to explore the target relationship between UCA1 and miR-204-5p. HEC-1A-sh-NC or HEC-1A-sh-UCA1 cells were co-cultured with peripheral blood mononuclear cells (PBMC) or cytokine-induced killer cells in vitro to explore the role of UCA1 in immune escape. Results: The expression level of UCA1 in endometrial cancer tissue (17.08±0.84) was higher than that in adjacent normal endometrial tissue (3.00±0.37), and the expression level of miR-204-5p (0.98±0.16) was lower than that in adjacent normal endometrial tissue (2.00±0.20, P<0.05). Pearson correlation analysis showed that the expression of miR-204-5p was negatively correlated with the expression of UCA1 (r=-0.330, P=0.030). The expressions of UCA1 and miR-204-5p were associated with the International Federation of Gynecology and Obstetrics stage of endometrial cancer, lymph node metastasis and vascular invasion (P<0.05). The relative ratio of absorbance (0.58±0.11) and the number of cell migration [(199.68±18.44)] in the sh-UCA1 group were lower than those in the sh-NC group (1.24±0.17 and 374.76±24.83), respectively. The apoptosis rate of sh-UCA1 group [(28.64±7.80)%] was higher than that of sh-NC group [(14.27±4.38)%, P<0.05]. After different ratios of effector cells and target cells were cultured, the cell survival rate of HEC-1A-sh-UCA1 group was lower than that of HEC-1A-sh-NC group, and the difference was statistically significant (P<0.05). UCA1 had a binding site for miR-204-5p. The relative ratio of absorbance (1.74±0.08) and the number of cell migration (426.00±18.00) cells in the UCA1+ anti-miR-204-5p group were higher than those in the control group [1.00±0.03 and (284.00±8.00) cells, respectively]. The apoptosis rate of UCA1+ anti-miR-204-5p group [(5.42±0.93)%] was lower than that of control group [(14.82±1.48)%, P<0.05]. HEC-1A-sh-UCA1 cells could induce higher interferon gamma (IFN-γ) expression when co-cultured with PBMC, and the levels of IFN-γ expression in PHA group and PHA+ pre-miR-204-5p group cells were 2.42±0.49 and 1.88±0.26, which were higher than that in the PHA+ pre-NC group (0.85±0.10, P<0.05). When co-cultured with cytokine-induced killer cells (different ratios) in vitro, the HEC-1A-sh-UCA1 group and the HEC-1A-pre-miR-204-5p group had lower survival rates than that in the HEC-1A-pre-miR-204-5p group. In the HEC-1A-pre-NC group, the differences were statistically significant (P<0.05). Conclusion: UCA1/miR-204-5p may play an important role in human endometrial cancer.
Female
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/genetics*
;
Leukocytes, Mononuclear
;
Carcinoma, Transitional Cell
;
Antagomirs
;
Cell Line, Tumor
;
Urinary Bladder Neoplasms
;
Cell Proliferation
;
Endometrial Neoplasms/genetics*
;
Apoptosis/genetics*
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
8.Construction of prognostic risk model of bladder cancer based on cuproptosis-related long non-coding RNAs.
Chengcheng XU ; Aqin CHEN ; Chaoming MAO ; Bing CUI
Journal of Zhejiang University. Medical sciences 2023;52(2):139-147
OBJECTIVES:
To construct a prognosis risk model based on long noncoding RNAs (lncRNAs) related to cuproptosis and to evaluate its application in assessing prognosis risk of bladder cancer patients.
METHODS:
RNA sequence data and clinical data of bladder cancer patients were downloaded from the Cancer Genome Atlas database. The correlation between lncRNAs related to cuproptosis and bladder cancer prognosis was analyzed with Pearson correlation analysis, univariate Cox regression, Lasso regression, and multivariate Cox regression. Then a cuproptosis-related lncRNA prognostic risk scoring equation was constructed. Patients were divided into high-risk and low-risk groups based on the median risk score, and the immune cell abundance between the two groups were compared. The accuracy of the risk scoring equation was evaluated using Kaplan-Meier survival curves, and the application of the risk scoring equation in predicting 1, 3 and 5-year survival rates was evaluated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression were used to screen for prognostic factors related to bladder cancer patients, and a prognostic risk assessment nomogram was constructed, the accuracy of which was evaluated with calibration curves.
RESULTS:
A prognostic risk scoring equation for bladder cancer patients was constructed based on nine cuproptosis-related lncRNAs. Immune infiltration analysis showed that the abundances of M0 macrophages, M1 macrophages, M2 macrophages, resting mast cells and neutrophils in the high-risk group were significantly higher than those in the low-risk group, while the abundances of CD8+ T cells, helper T cells, regulatory T cells and plasma cells in the low-risk group were significantly higher than those in the high-risk group (all P<0.05). Kaplan-Meier survival curve analysis showed that the total survival and progression-free survival of the low-risk group were longer than those of the high-risk group (both P<0.01). Univariate and multivariate Cox analysis showed that the risk score, age and tumor stage were independent factors for patient prognosis. The ROC curve analysis showed that the area under the curve (AUC) of the risk score in predicting 1, 3 and 5-year survival was 0.716, 0.697 and 0.717, respectively. When combined with age and tumor stage, the AUC for predicting 1-year prognosis increased to 0.725. The prognostic risk assessment nomogram for bladder cancer patients constructed based on patient age, tumor stage, and risk score had a prediction value that was consistent with the actual value.
CONCLUSIONS
A bladder cancer patient prognosis risk assessment model based on cuproptosis-related lncRNA has been successfully constructed in this study. The model can predict the prognosis of bladder cancer patients and their immune infiltration status, which may also provide a reference for tumor immunotherapy.
Humans
;
CD8-Positive T-Lymphocytes
;
Prognosis
;
RNA, Long Noncoding/genetics*
;
Urinary Bladder
;
Urinary Bladder Neoplasms/genetics*
;
Copper
;
Apoptosis
10.Significance of TERT promoter mutation in differential diagnosis of non-invasive inverted urothelial lesions of bladder.
Y H ZHANG ; J J XIE ; J G WANG ; Y WANG ; X H ZHAN ; J GAO ; H Y HE
Chinese Journal of Pathology 2023;52(12):1216-1222
Objective: To investigate the gene mutation of telomerase reverse transcriptase (TERT) promoter in inverted urothelial lesions of the bladder and its significance in differential diagnosis. Methods: From March 2016 to February 2022, a total of 32 patients with inverted urothelial lesions diagnosed in Department of Pathology at Qingdao Chengyang People's Hospital and 24 patients at the Affiliated Hospital of Qingdao University were collected, including 7 cases of florid glandular cystitis, 13 cases of inverted urothelial papilloma, 8 cases of inverted urothelial neoplasm with low malignant potential, 17 cases of low-grade non-invasive inverted urothelial carcinoma, 5 cases of high-grade non-invasive inverted urothelial carcinoma, and 6 cases of nested subtype of urothelial carcinoma were retrospectively analyzed for their clinical data and histopathological features. TERT promoter mutations were analyzed by Sanger sequencing in all the cases. Results: No mutations in the TERT promoter were found in the florid glandular cystitis and inverted urothelial papilloma. The mutation rates of the TERT promoter in inverted urothelial neoplasm with low malignant potential, low grade non-invasive inverter urothelial carcinoma, high grade non-invasive inverted urothelial carcinoma and nested subtype urothelial carcinoma were 1/8, 8/17, 2/5 and 6/6, respectively. There was no significant difference in the mutation rate of TERT promoter among inverted urothelial neoplasm with low malignant potential, low-grade non-invasive inverted urothelial carcinoma, and high-grade non-invasive inverted urothelial carcinoma (P>0.05). All 6 cases of nested subtype of urothelial carcinoma were found to harbor the mutation, which was significantly different from inverted urothelial neoplasm with low malignant potential and non-invasive inverted urothelial carcinoma (P<0.05). In terms of mutation pattern, 13/17 of TERT promoter mutations were C228T, 4/17 were C250T. Conclusions: The morphology combined with TERT promoter mutation detection is helpful for the differential diagnosis of bladder non-invasive inverted urothelial lesions.
Humans
;
Urinary Bladder Neoplasms/genetics*
;
Carcinoma, Transitional Cell/pathology*
;
Urinary Bladder/pathology*
;
Diagnosis, Differential
;
Retrospective Studies
;
Mutation
;
Cystitis/genetics*
;
Neoplasms, Glandular and Epithelial/diagnosis*
;
Papilloma/diagnosis*
;
Telomerase/genetics*

Result Analysis
Print
Save
E-mail