1.Clinical and electrophysiological features of Charcot-Marie-Tooth disease type 1 caused by GJB1 gene mutation: A pedigree analysis
Binbin ZHANG ; Jianjun LI ; Li DI
Journal of Apoplexy and Nervous Diseases 2024;41(12):1129-1133
Objective To investigate the clinical phenotype, electrophysiological features, and family characteristics of a family with X-linked dominant hereditary Charcot-Marie-Tooth disease type 1 (CMTX1) associated with GJB1 gene mutation. Methods Related clinical data were collected from ten patients in the four generations of a family with CMTX1, among whom three patients underwent electrophysiological nerve conduction detection, and the proband underwent high-throughput whole-exome sequencing, while the other patients in the family underwent Sanger sequencing. Results There were a total of ten patients in this family, with four male patients and six female patients, and their clinical manifestations included varying degrees of symmetrical distal limb weakness and atrophy, hand tremor, pes cavus, hammer toes, and reductions in acupuncture and vibration sensations. The female patients in this family tended to have severe clinical phenotypes, and electrophysiological results showed peripheral nerve myelin sheath and axonal damage. Genetic testing showed that the proband had a heterozygous mutation of c.43C > T (p.Arg15Trp) in the GJB1 gene, which was a pathogenic mutation. The proband’s two brothers and niece all carried this mutation at the same site. Conclusion CMTX1 has obvious clinical heterogeneity, and it is of great significance to fully understand the clinical phenotype, electrophysiological features, and genetic characteristics of CMTX1 associated with heterozygous mutations in the GJB1 gene.
Electrophysiology
2.Bionic optic nerve based on perovskite (CsPbBr 3) quantum-dots.
Pingjun ZENG ; Xudong JIN ; Yubo PENG ; Min ZHAO ; Zhipeng GAO ; Xiaona LI ; Jianlong JI ; Weiyi CHEN
Journal of Biomedical Engineering 2023;40(3):522-528
The bionic optic nerve can mimic human visual physiology and is a future treatment for visual disorders. Photosynaptic devices could respond to light stimuli and mimic normal optic nerve function. By modifying (Poly(3,4-ethylenedioxythio-phene):poly (styrenesulfonate)) active layers with all-inorganic perovskite quantum dots, with an aqueous solution as the dielectric layer in this paper, we developed a photosynaptic device based on an organic electrochemical transistor (OECT). The optical switching response time of OECT was 3.7 s. To improve the optical response of the device, a 365 nm, 300 mW·cm -2 UV light source was used. Basic synaptic behaviors such as postsynaptic currents (0.225 mA) at a light pulse duration of 4 s and double pulse facilitation at a light pulse duration of 1 s and pulse interval of 1 s were simulated. By changing the way light stimulates, for example, by adjusting the intensity of the light pulses from 180 to 540 mW·cm -2, the duration from 1 to 20 s, and the number of light pulses from 1 to 20, the postsynaptic currents were increased by 0.350 mA, 0.420 mA, and 0.466 mA, respectively. As such, we realized the effective shift from short-term synaptic plasticity (100 s recovery of initial value) to long-term synaptic plasticity (84.3% of 250 s decay maximum). This optical synapse has a high potential for simulating the human optic nerve.
Humans
;
Quantum Dots
;
Bionics
;
Oxides
;
Optic Nerve
3.Advances in cell nuclear mechanobiology and its regulation mechanisms.
Ran YAN ; Xiangyan CHEN ; Yixi ZHANG ; Meng WANG ; Shun LI ; Yiyao LIU
Journal of Biomedical Engineering 2023;40(4):617-624
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Cell Nucleus
;
Biophysics
;
Cytoskeleton
;
Phenotype
;
Signal Transduction
4.Effectiveness of proximal femur bionic nail for intertrochanteric fracture in the elderly.
Dongsong YANG ; Qiong WANG ; Zhonghao LUAN ; Jiansheng LING ; Peng CHEN ; Xudong CHEN ; Dongtao YUAN ; Xiangzhou ZHEN ; Junqiang WANG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1198-1204
OBJECTIVE:
To evaluate effectiveness of proximal femur bionic nail (PFBN) in treatment of intertrochanteric fractures in the elderly compared to the proximal femoral nail antirotation (PFNA).
METHODS:
A retrospective analysis was made on 48 geriatric patients with intertrochanteric fractures, who met the selection criteria and were admitted between January 2020 and December 2022. Among them, 24 cases were treated with PFBN fixation after fracture reduction (PFBN group), and 24 cases were treated with PFNA fixation (PFNA group). There was no significant difference in baseline data such as age, gender, cause of injury, side and type of fracture, time from injury to operation, and preoperative mobility score, American Society of Anesthesiologists (ASA) score, Alzheimer's disease degree scoring, self-care ability score, osteoporosis degree (T value), and combined medical diseases between the two groups ( P>0.05). The operation time, intraoperative blood loss, number of blood transfusions, transfusion volume, length of hospital stay, occurrence of complications, weight-bearing time after operation, and postoperative visual analogue scale (VAS) score, walking ability score, mobility score, self-care ability score were recorded and compared between the two groups. And the radiographic assessment of fracture reduction quality and postoperative stability, and fracture healing time were recorded.
RESULTS:
The operations in both groups were successfully completed. All patients were followed up 6-15 months with an average time of 9.8 months in PFBN group and 9.6 months in PFNA group. The operation time was significantly longer in PFBN group than in PFNA group ( P<0.05), but there was no significant difference in intraoperative blood loss, number of blood transfusions, transfusion volume, length of hospital stay, change in activity ability score, and change in self-care ability score between the two groups ( P>0.05). The weight-bearing time after operation was significantly shorter in PFBN group than in PFNA group ( P<0.05), and the postoperative VAS score and walking ability score were significantly better in PFBN group than in PFNA group ( P<0.05). Radiographic assessment showed no significant difference in fracture reduction scores and postoperative stability scores between the two groups ( P>0.05). All fractures healed and there was no significant difference in fracture healing time between the two groups ( P>0.05). The incidence of complications was significantly lower in PFBN group (16.7%, 4/24) than in PFNA group (45.8%, 11/24) ( P<0.05).
CONCLUSION
Compared with PFNA, PFBN in the treatment of elderly intertrochanteric fractures can effectively relieve postoperative pain, shorten bed time, reduce the risk of complications, and facilitate the recovery of patients' hip joint function and walking ability.
Humans
;
Aged
;
Retrospective Studies
;
Fracture Fixation, Intramedullary
;
Bionics
;
Blood Loss, Surgical
;
Treatment Outcome
;
Bone Nails
;
Hip Fractures/surgery*
;
Femur
5.The influence of sacroiliac joint reduction quality on the clinical effect of bionic reduction and internal fixation for pelvic ring injury.
Chun Gui LIU ; Kun ZHANG ; Dong Yang LI ; Da Shuang LI ; Rui LI ; Xing WEI ; Yan ZHUANG ; Hu WANG
Chinese Journal of Surgery 2022;60(9):866-872
Objective: To examine the influence of sacroiliac joint reduction quality on the clinical effect of bionic reduction and internal fixation for pelvic ring injury. Methods: From January 2014 to February 2019,the clinical data of 78 patients diagnosed with pelvic ring injury involving sacroiliac joints and treated with bionic reduction and internal fixation at Honghui Hospital Affiliated to Medical College of Xi'an Jiaotong University were retrospectively analyzed.There were 48 males and 30 females,aged (48.3±8.3)years (range:28 to 68 years).After bionic reduction and internal fixation,the patients were grouped according to the maximum displacement distance (d) of sacroiliac joint residual on the damaged side measured by CT examination. Patients with d≤5 mm were included in anatomical bionic reduction group,and patients with d>5 mm were included in non-anatomical bionic reduction group.In non-anatomical bionic reduction group,according to the direction of residual displacement,the patients were divided into separation displacement group and anterior-posterior displacement group. The X-ray examination was performed immediately and at the last follow-up after operation.If sacroiliac joint was relocated,or internal plant loosening,displacement,fracture and re-displacement of fracture,it was defined as internal fixation failure.Majeed pelvic fracture scoring system was used to evaluate the postoperative functional status of the two groups,and visual analogue scale (VAS) was used to evaluate the postoperative pain.Comparison between groups was performed by completely random design ANOVA,χ2 test,Fisher's exact test,Mann-Whitney U and Kruskal-Wallis H test. Results: According to the CT examination,28 cases were included in anatomical bionic reduction group,and 50 cases were included in non-anatomical bionic reduction group.In non-anatomical bionic reduction group,27 cases were divided into separation displacement group and 23 cases were in anterior-posterior displacement group.There was no significant difference in general data among anatomical bionic reduction group,separation displacement group and anterior-posterior displacement group (P>0.05). The follow-up time was (37.8±6.6) months (range:25 to 51 months). At the last follow up,the excellent and good rate of Majeed score in anatomical bionic reduction group was 96.4%(27/28),which was better than that in separation displacement group(74.1%(20/27)) and anterior-posterior displacement group (30.4%(7/23)),the difference was statistically significant (Z=-6.479,P<0.01;Z=-6.256,P<0.01); and the good rate of the separation displacement group was better than that of the anterior-posterior displacement group(Z=-3.607,P<0.01).The VAS of anatomical bionic reduction group (17 cases with 0 point, 11 cases with 1 to 3 points) were lower than that of the displacement group (6 cases with 0 point,16 cases with 1 to 3 points,5 cases with 4 to 6 points) and anterior-posterior displacement group (3 cases with 0 point,7 cases with 1 to 3 points,13 cases with 4 to 6 points),the difference was statistically significant (Z=-3.515,P<0.01;Z=-3.506,P<0.01),and there was no difference between separation displacement group and anterior-posterior displacement group.Total of 8 cases of internal fixation failure occurred,and the failure rate of anatomical bionic reduction group (0,0/28) was lower than that of the separation displacement group (11.1%,3/27) and anterior-posterior displacement group (21.7%,5/23) (P=0.111,P=0.014),and there was no difference between separation displacement group and anterior-posterior displacement group(P=0.444). Conclusions: In the bionic reduction and internal fixation of pelvic fracture involving sacroiliac joint injury,the functional status,pain and internal fixation failure rate of patients with anatomical bionic reduction of sacroiliac joint are significantly better than those in the non-anatomical bionic reduction.The functional recovery of patients with separation displacement is better than that of the patients with anterior and posterior displacement.
Bionics
;
Bone Screws
;
Female
;
Fracture Fixation, Internal
;
Fractures, Bone/surgery*
;
Humans
;
Male
;
Retrospective Studies
;
Sacroiliac Joint/surgery*
6.Independent innovation research, development and transformation of precise bionic repair technology for oral prosthesis.
Yu Chun SUN ; Yu Qing GUO ; Hu CHEN ; Ke Hui DENG ; Wei Wei LI
Journal of Peking University(Health Sciences) 2022;54(1):7-12
According to the fourth national oral health epidemiological survey report (2018), billions of teeth are lost or missing in China, inducing chewing dysfunction, which is necessary to build physiological function using restorations. Digital technology improves the efficiency and accuracy of oral restoration, with the application of three-dimensional scans, computer-aided design (CAD), computer-aided manufacturing (CAM), bionic material design and so on. However, the basic research and product development of digital technology in China lack international competitiveness, with related products basically relying on imports, including denture 3D design software, 3D oral printers, and digitally processed materials. To overcome these difficulties, from 2001, Yuchun Sun's team, from Peking University School and Hospital of Stomatology, developed a series of studies in artificial intelligence design and precision bionics manufacturing of complex oral prostheses. The research included artificial intelligence design technology for complex oral prostheses, 3D printing systems for oral medicine, biomimetic laminated zirconia materials and innovative application of digital prosthetics in clinical practice. The research from 2001 to 2007 was completed under the guidance of Prof. Peijun Lv and Prof. Yong Wang. Under the support of the National Natural Science Foundation of China, the National Science and Technology Support Program, National High-Tech R & D Program (863 Program) and Beijing Training Project for the Leading Talents in S & T, Yuchun Sun's team published over 200 papers in the relevant field, authorized 49 national invention patents and 1 U.S. invention patent and issued 2 national standards. It also developed 8 kinds of core technology products in digital oral prostheses and 3 kinds of clinical diagnosis and treatment programs, which significantly improved the design efficiency of complex oral prostheses, the fabrication accuracy of metal prostheses and the bionic performance of ceramic materials. Compared with similar international technologies, the program doubled the efficiency of bionic design and manufacturing accuracy and reduced the difficulty of diagnosis and cost of treatment and application by 50%, with the key indicators of those products reaching the international leading level. This program not only helped to realize precision, intelligence and efficiency during prostheses but also provided functional and aesthetic matches for patients after prostheses. The program was rewarded with the First Technical Innovation Prize of the Beijing Science and Technology Awards (2020), Gold Medal of Medical Research Group in the First Medical Science and Technology Innovation Competition of National Health Commission of the People's Republic of China (2020) and Best Creative Award in the First Translational Medical Innovation Competition of Capital (2017). This paper is a review of the current situation of artificial intelligence design and precision bionics manufacturing of complex oral prosthesis.
Artificial Intelligence
;
Bionics
;
Computer-Aided Design
;
Dental Prosthesis Design
;
Humans
;
Printing, Three-Dimensional
;
Prostheses and Implants
7.The development of artificial cervical disc replacement from the perspective of orthopedic bionic therapy.
Ding Jun HAO ; Jun Song YANG ; Tuan Jiang LIU ; Bao Rong HE
Chinese Journal of Surgery 2022;60(3):203-207
The modern surgical treatment of cervical degenerative disc disease can be traced back to the advent of anterior cervical decompression and fusion.With the emergence of fusion-related complications,different scholars have promoted the gradual transformation of cervical degenerative disc diseases from "fusion fixation" to "non-fusion reconstruction" through in-depth fusion with materials science,engineering mechanics and other disciplines.The innovation of this treatment concept is consistent with the original intention of "structural remodeling,functional reconstruction,maximum repair and reconstruction of the morphology and function of skeletal muscle system" in orthopedic bionic treatment,which is essentially in line with the "bionic alternative therapy" in orthopedic bionic therapy.This paper focuses on the surgical treatment of cervical degenerative disc diseases,reviews the development history of artificial cervical disc replacement,analyzes the evolution from orthopedic biomimetic therapy,and explores a new direction for the design of artificial cervical disc prostheses and the treatment of cervical degenerative disc diseases in the future.
Bionics
;
Cervical Vertebrae/surgery*
;
Diskectomy
;
Follow-Up Studies
;
Humans
;
Intervertebral Disc/surgery*
;
Intervertebral Disc Degeneration/surgery*
;
Spinal Fusion
;
Total Disc Replacement
;
Treatment Outcome
8.Application of bionics in spinal surgery.
Chinese Journal of Surgery 2022;60(3):208-212
Spinal bionic therapy is the application of bionics concept, by imitating the natural anatomical structure and physiological function of the spine, to treat spinal diseases using various modern technology, materials and equipment .How to repair or preserve the anatomical structure and function of spine to the maximum extent while treating spinal diseases is an important content of spinal bionic therapy.Firstly, the use of movable spinal implants not only preserves the spinal mobility function to a certain extent, reduces the degeneration of adjacent segments, but also reduces the incidence of internal fixation fracture and improves the long-term efficacy.Secondly, with the help of the development of three dimensional printing technology, personalized artificial prostheses can be made to fill the spinal structure with complex defects, and biological scaffolds and functional prostheses with anti-tumor drugs can not only realize the biomimetic and functional spine anatomy, but also become a multiplier of the efficacy of anti-tumor drugs.Thirdly, in the design and manufacture of spinal orthopaedic braces, computer aided design and manufacturing technology can make spinal orthopaedic braces more comfortable with better orthopaedic effect and ergonomic characteristics.How to apply bionics concepts and relate technologies to spinal surgery have not been determined yet, and no relevant diagnosis and treatment guidelines have been formulated.It is foreseeable that with the continuous development of medical technology, the content of spinal bionic therapy will be gradually enriched and improved, and become a powerful measure to overcome difficulties in the diagnosis and treatment of spinal surgery diseases.
Bionics
;
Computer-Aided Design
;
Humans
;
Printing, Three-Dimensional
;
Prostheses and Implants
;
Spine/surgery*
9.Influence of bionic texture coronary stent on hemodynamics after implantation.
Changsheng LI ; Haiquan FENG ; Shuangquan MA ; Liping BAI
Journal of Biomedical Engineering 2022;39(2):339-346
To explore the influence of bionic texture coronary stents on hemodynamics, a type of bioabsorbable polylactic acid coronary stents was designed, for which a finite element analysis method was used to carry out simulation analysis on blood flow field after the implantation of bionic texture stents with three different shapes (rectangle, triangle and trapezoid), thus revealing the influence of groove shape and size on hemodynamics, and identifying the optimal solution of bionic texture groove. The results showed that the influence of bionic texture grooves of different shapes and sizes on the lower wall shear stress region had a certain regularity. Specifically, the improvement effect of grooves above 0.06 mm on blood flow characteristics was poor, and the effect of grooves below 0.06 mm was good. Furthermore, the smaller the size is, the better the improvement effect is, and the 0.02 mm triangular groove had the best improvement effect. Based on the results of this study, it is expected that bionic texture stents have provided a new method for reducing in-stent restenosis.
Bionics
;
Computer Simulation
;
Coronary Vessels
;
Hemodynamics/physiology*
;
Models, Cardiovascular
;
Stents
;
Stress, Mechanical
10.Biomedical applications of bionic untethered micro-nano robots.
Ke ZHOU ; Mengmeng CHEN ; Jing FU ; Shuai XU ; Runhuai YANG ; Junchao QIAN
Journal of Biomedical Engineering 2021;38(5):1003-1009
Bionic untethered micro-nano robots, due to their advantages of small size, low weight, large thrust-to-weight ratio, strong wireless mobility, high flexibility and high sensitivity, have very important application values in the fields of biomedicine, such as disease diagnosis, minimally invasive surgery, targeted therapy, etc. This review article systematically introduced the manufacturing methods and motion control, and discussed the biomedical applications of bionic untethered micro-nano robots. Finally, the article discussed the possible challenges for bionic untethered micro-nano robots in the future. In summary, this review described bionic untethered micro-nano robots and their potential applications in biomedical fields.
Bionics
;
Equipment Design
;
Minimally Invasive Surgical Procedures
;
Motion
;
Robotics

Result Analysis
Print
Save
E-mail