1.The development status of interdisciplinary combination between medicine and engineering in urology: deep integration between medicine and engineering in urology.
Journal of Biomedical Engineering 2020;37(2):189-192
Urology is an ancient academic discipline, and its rapid development is due to the combination between medicine and engineering. The development of urology in China is an example of the combination of industry-academia-research based on the progress of science and technology. This paper mainly summarizes the recent advances of interdisciplinary combination between medicine and engineering in urology.
Biomedical Engineering
;
trends
;
China
;
Humans
;
Interdisciplinary Research
;
Urology
;
trends
2.Advances in the research and application of prefabricated flap.
Chinese Journal of Burns 2014;30(5):437-440
Prefabricated flap is so named as the skin flaps is prepared by prefabricating a circulation-rich skin flap by implanting a named blood vessel or a portion of fascia which is incorporated with rich blood supply. After the flap has been proven as a flap supplied by ample blood supply, it is transplanted to a wound as a local or free transplantation. The core of prefabricated flap is vascularization. Beside the different methods of prefabrication, vascularization can be facilitated by use of growth factors and cytokines, skin and soft tissue expansion technique, and biomaterial. Prefabricated flap is currently widely used in clinic. With the advances in the research of prefabrication technology and advances in its clinical application, prefabricated flap transplantation is becoming a promising strategy in wound healing.
Biomedical Research
;
trends
;
Humans
;
Skin
;
Skin Transplantation
;
trends
;
Surgical Flaps
;
Tissue Engineering
;
methods
3.Research progress of human amniotic membrane applications.
Journal of Biomedical Engineering 2014;31(4):930-934
Application research on human amniotic membrane has been carried out for nearly a hundred years and people found that there were more than dozens of kinds bioactive substances in the amniotic membrane. It has been proved that the amniotic membrane has a lot of functions, such as anti-inflammatory, anti-bacterial, anti-virus, anti-angiogenic and promoting cell apoptosis, and soon. As effective treatments, amniotic membrane has been used for adjunctive therapy of burns, trauma, ophthalmic damage, dermatopathya. Recent advances of amniotic membrane and amniotic membrane-derived cells research have led to enormous progress in skin tissue engineering, vascular tis- sue engineering, biological scaffold material, and biological sustained-release materials. Amniotic membrane and amniotic membrane derived cells have a significant advantage and unique charm in medical field. Therefore, they have higher research value and broad prospects in the applications.
Amnion
;
Biomedical Research
;
trends
;
Humans
;
Tissue Engineering
;
Treatment Outcome
4.An Engineering View on Megatrends in Radiology: Digitization to Quantitative Tools of Medicine.
Namkug KIM ; Jaesoon CHOI ; Jaeyoun YI ; Seungwook CHOI ; Seyoun PARK ; Yongjun CHANG ; Joon Beom SEO
Korean Journal of Radiology 2013;14(2):139-153
Within six months of the discovery of X-ray in 1895, the technology was used to scan the interior of the human body, paving the way for many innovations in the field of medicine, including an ultrasound device in 1950, a CT scanner in 1972, and MRI in 1980. More recent decades have witnessed developments such as digital imaging using a picture archiving and communication system, computer-aided detection/diagnosis, organ-specific workstations, and molecular, functional, and quantitative imaging. One of the latest technical breakthrough in the field of radiology has been imaging genomics and robotic interventions for biopsy and theragnosis. This review provides an engineering perspective on these developments and several other megatrends in radiology.
Biological Markers/analysis
;
Biomedical Engineering
;
Diagnosis, Computer-Assisted/*trends
;
Diagnostic Imaging/*trends
;
Equipment Design
;
Genomics
;
Humans
;
Image Processing, Computer-Assisted/*trends
;
Radiology Information Systems/*trends
;
Robotics
;
Systems Integration
;
User-Computer Interface
5.Flexible print circuit technology application in biomedical engineering.
Lihua JIANG ; Yi CAO ; Xiaolin ZHENG
Journal of Biomedical Engineering 2013;30(3):670-674
Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.
Biomedical Engineering
;
instrumentation
;
methods
;
Electricity
;
Equipment Design
;
Lab-On-A-Chip Devices
;
trends
;
Microelectrodes
;
Microfluidic Analytical Techniques
;
instrumentation
;
Microfluidics
;
instrumentation
6.Progress in research on LiquiChip technology in biomedical engineering.
Journal of Biomedical Engineering 2010;27(6):1406-1409
As a novel BioChip technique, LiquiChip technique uses fluorescent polystyrene beads as the carrriers of various probes, thus the related reactions of bio-molecules are in liquid system. LiquiChip technique is of use in the methods to detect bio-macromolecules, e. g. DNA detection, immunoassay, cytokine assay, hormone assay, environmental survey and analysis. In comparison to conventional biochip, LiquiChip presents the advantages of high-throughput, high sensitivity, high accuracy, fine repeatability, wide linear range, etc. Now LiquiChip technique is widely used in biomedical engineering field.
Animals
;
Biomedical Engineering
;
trends
;
Biosensing Techniques
;
methods
;
Humans
;
Microfluidic Analytical Techniques
;
methods
;
Molecular Imprinting
;
Protein Array Analysis
;
methods
7.Probe into the ways of developing China's clinical engineering.
Chinese Journal of Medical Instrumentation 2008;32(3):229-226
This paper introduces the present situation of clinical engineering in China and in the United States, and analyzes the gaps between them. Finally, from the staff's configuration and the work scope of clinical engineering, the developing trends and implementation strategies of China's clinical engineering are presented too.
Biomedical Engineering
;
trends
;
China
;
United States
8.The cell micro-encapsulation techniques and its advancement in the field of gene therapy.
Journal of Biomedical Engineering 2006;23(6):1355-1358
It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.
Biomedical Engineering
;
methods
;
trends
;
Cell Transplantation
;
methods
;
trends
;
Genetic Therapy
;
trends
;
Humans
;
Miniaturization
;
Tissue Engineering
;
methods
;
trends
9.Research and development of biomedical application of carbon nanotubes and related composites.
Journal of Biomedical Engineering 2006;23(2):438-441
Carbon nanotubes, a new member of the carbon material family, can be considered as graphite sheets rolled-up into cylinders with diameters ranging in the nanometer scale. In recent years, carbon nanotubes have attracted intensive interests because of their unique nanostructures and outstanding mechanical, electrical and magnetic properties. In this paper, the structures and basic features of carbon nanotubes were described in brief. The research advances in the carbon nanotubes on the specific recognition of biomolecules by surface modification and functionalization, in the enhancement to cell growth as culture scaffolds in vitro, and in the improvement of biocompatibility for implantable biomedical material were reviewed. Also comments were made on their potential applications in biomedical sensor and biomedical microelectrics.
Biocompatible Materials
;
chemistry
;
Biomedical Engineering
;
trends
;
Nanotechnology
;
methods
;
trends
;
Nanotubes, Carbon
;
chemistry
10.Development and expectation of rotary impeller blood pump.
Zhong YUN ; Zhongliang GONG ; Jianping TAN ; Guorong LI ; Xiandong XU
Journal of Biomedical Engineering 2005;22(1):151-154
This essay introduces the new development of rotary impeller blood pump technology in three design aspects, i.e. pump structure, bearing and seal, control system. Moreover, an expectation for the development trend of artificial heart technology is presented.
Biomedical Engineering
;
Equipment Design
;
Heart, Artificial
;
trends
;
Humans

Result Analysis
Print
Save
E-mail