1.Biomechanical study of lumbar vertebra during gait cycle in adolescent idiopathic scoliosis.
Yunxin WANG ; Ping XU ; Yingsong WANG ; Yingliang LIU ; Shisen XU ; Zhi ZHAO ; Hongfei LI ; Xiaoming CHEN
Journal of Biomedical Engineering 2025;42(3):601-609
In order to investigate the mechanical response of lumbar vertebrae during gait cycle in adolescents with idiopathic scoliosis (AIS), the present study was based on computed tomography (CT) data of AIS patients to construct model of the left support phase (ML) and model of the right support phase (MR), respectively. Firstly, material properties, boundary conditions and load loading were set to simulate the lumbar vertebra-pelvis model. Then, the difference of stress and displacement in the lumbar spine between ML and MR was compared based on the stress and displacement cloud map. The results showed that in ML, the lumbar stress was mostly distributed on the convex side, while in MR, it was mostly distributed on the concave side. The stress of the two types of stress mainly gathered near the vertebral arch plate, and the stress of the vertebral arch plate was transmitted to the vertebral body through the pedicle with the progress of gait. The average stress of the intervertebral tissue in MR was greater than that in ML, and the difference of stress on the convex and convex side was greater. The displacement of lumbar vertebrae in ML decreased gradually from L1 to L5. The opposite is true in MR. In conclusion, this study can accurately quantify the stress on the lumbar spine during gait, and may provide guidance for brace design and clinical decision making.
Humans
;
Lumbar Vertebrae/diagnostic imaging*
;
Scoliosis/diagnostic imaging*
;
Adolescent
;
Gait/physiology*
;
Biomechanical Phenomena
;
Tomography, X-Ray Computed
;
Stress, Mechanical
;
Female
;
Male
2.Finite element modeling and simulation study of solid-liquid biphase fiber-reinforced lumbar intervertebral disc.
Yongchang GAO ; Yantao FU ; Qingfeng CUI ; Shibin CHEN ; Peng LIU ; Xifang LIU
Journal of Biomedical Engineering 2025;42(4):799-807
The lumbar intervertebral disc exhibits a complex physiological structure with interactions between various segments, and its components are extremely complex. The material properties of different components in the lumbar intervertebral disc, especially the water content (undergoing dynamic change as influenced by age, degeneration, mechanical loading, and proteoglycan content) - critically determine its mechanical properties. When the lumbar intervertebral disc is under continuous pressure, water seeps out, and after the pressure is removed, water re-infiltrates. This dynamic fluid exchange process directly affects the mechanical properties of the lumbar intervertebral disc, while previous isotropic modeling methods have been unable to accurately reflect such solid-liquid phase behaviors. To explore the load-bearing mechanism of the lumbar intervertebral disc and establish a more realistic mechanical model of the lumbar intervertebral disc, this study developed a solid-liquid biphasic, fiber-reinforced finite element model. This model was used to simulate the four movements of the human lumbar spine in daily life, namely flexion, extension, axial rotation, and lateral bending. The fluid pressure, effective solid stress, and liquid pressure-bearing ratio of the annulus fibrosus and nucleus pulposus of different lumbar intervertebral discs were compared and analyzed under the movements. Under all the movements, the fluid pressure distribution was closer to the nucleus pulposus, while the effective solid stress distribution was more concentrated in the outer annulus fibrosus. In terms of fluid pressure, the maximum fluid pressure of the lumbar intervertebral disc during lateral bending was 1.95 MPa, significantly higher than the maximum fluid pressure under other movements. Meanwhile, the maximum effective solid stress of the lumbar intervertebral disc during flexion was 2.43 MPa, markedly higher than the maximum effective solid stress under other movements. Overall, the liquid pressure-bearing ratio under axial rotation was smaller than that under other movements. Based on the solid-liquid biphasic modeling method, this study more accurately revealed the dominant role of the liquid phase in the daily load-bearing process of the lumbar intervertebral disc and the solid-phase mechanical mechanism of the annulus fibrosus load-bearing, and more effectively predicted the solid-liquid phase co-load-bearing mechanism of the lumbar intervertebral disc in daily life.
Humans
;
Finite Element Analysis
;
Intervertebral Disc/physiology*
;
Lumbar Vertebrae/physiology*
;
Weight-Bearing/physiology*
;
Biomechanical Phenomena
;
Stress, Mechanical
;
Computer Simulation
;
Models, Biological
3.Finite element analysis of impact of bone mass and volume in low-density zone beneath tibial plateau on cartilage and meniscus in knee joint.
Longfei HAN ; Wenyuan HOU ; Shun LU ; Zijun ZENG ; Kun LIN ; Mingli HAN ; Guifeng LUO ; Long TIAN ; Fan YANG ; Mincong HE ; Qiushi WEI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):296-306
OBJECTIVE:
To investigate the impact of bone mass and volume of low-density zones beneath the tibial plateau on the maximum von Mises stresses experienced by the cartilage and meniscus in the knee joint.
METHODS:
The study included one healthy adult volunteer, from whom CT scans were obtained, and one patient diagnosed with knee osteoarthrisis (KOA), for whom X-ray films were acquired. A static model of the knee joint featuring a low-density zone was established based on a normal knee model. In the finite element analysis, axial loads of 1 000 N and 1 800 N were applied to the weight-bearing region of the upper surface of the femoral head for model validation and subsequent finite element studies, respectively. The maximum von Mises stresses in the femoral cartilage, as well as the medial and lateral tibial cartilage and menisci, were observed, and the stress percentage of the medial and lateral components were concurrently analyzed. Additionally, HE staining, as well as alkaline magenta staining, were performed on the pathological specimens of patients with KOA in various low-density regions.
RESULTS:
The results of model validation indicated that the model was consistent with normal anatomical structures and correlated with previous calculations documented in the literature. Static analysis revealed that the maximum von Mises stress in the medial component of the normal knee was the lowest and increased with the advancement of the hypointensity zone. In contrast, the lateral component exhibited an opposing trend, with the maximum von Mises stress in the lateral component being the highest and decreasing as the hypointensity zone progressed. Additionally, the medial component experienced an increasing proportion of stress within the overall knee joint. HE staining demonstrated that the chondrocyte layer progressively deteriorated and may even disappear as the hypointensity zone expanded. Furthermore, alkaline magenta staining indicated that the severity of microfractures in the trabecular bone increased concurrently with the expansion of the hypointensity zone.
CONCLUSION
The presence of subtalar plateau low-density zone may aggravate joint degeneration. In clinical practice, it is necessary to pay attention to the changes in the subtalar plateau low-density zone and actively take effective measures to strengthen the bone status of the subtalar plateau low-density zone and restore the complete biomechanical function of the knee joint, in order to slow down or reverse the progression of osteoarthritis.
Humans
;
Finite Element Analysis
;
Knee Joint/physiology*
;
Tibia/anatomy & histology*
;
Cartilage, Articular/physiology*
;
Menisci, Tibial/physiopathology*
;
Tomography, X-Ray Computed
;
Osteoarthritis, Knee/diagnostic imaging*
;
Weight-Bearing
;
Bone Density
;
Adult
;
Stress, Mechanical
;
Male
;
Middle Aged
;
Biomechanical Phenomena
;
Female
4.Difference of compensatory mechanisms in bilateral knee osteoarthritis patients of varying severity.
Bo HU ; Junqing WANG ; Hui ZHANG ; Tao DENG ; Yong NIE ; Kang LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):861-868
OBJECTIVE:
To investigate the load distribution on the more painful and less painful limbs in patients with mild-to-moderate and severe bilateral knee osteoarthritis (KOA) and explore the compensatory mechanisms in both limbs among bilateral KOA patients with different severity levels.
METHODS:
A total of 113 participants were enrolled between July 2022 and September 2023. This cohort comprised 43 patients with mild-to-moderate bilateral KOA (Kellgren-Lawrence grade 2-3), 43 patients with severe bilateral KOA (Kellgren-Lawrence grade 4), and 27 healthy volunteers (healthy control group). The visual analogue scale (VAS) score for pain, the Hospital for Special Surgery (HSS) score, passive knee range of motion (ROM), and hip-knee-ankle angle (HKA) were used to assess walking pain intensity, joint function, and lower limb alignment in KOA patients, respectively. Motion trajectories of reflective markers and ground reaction force data during walking were captured using a gait analysis system. Musculoskeletal modeling was then employed to calculate biomechanical parameters, including the peak knee adduction moment (KAM), KAM impulse, peak joint contact force (JCF), and peak medial/lateral contact forces (MCF/LCF). Statistical analyses were performed to compare differences in clinical and gait parameters between bilateral limbs. Additionally, one-dimensional statistical parametric mapping was utilized to analyze temporal gait data.
RESULTS:
Mild-to-moderate KOA patients showed the significantly higher HSS score (67.7±7.9) than severe KOA patients (51.9±8.9; t=8.747, P<0.001). The more painful limb in all KOA patients exhibited significantly greater HKA and higher VAS scores compared to the less painful limb ( P<0.05). While bilateral knee ROM did not differ significantly in mild-to-moderate KOA patients ( P>0.05), the severe KOA patients had significantly reduced ROM in the more painful limb versus the less painful limb ( P<0.05). Healthy controls showed no significant bilateral difference in any biomechanical parameters ( P>0.05). All KOA patients demonstrated longer stance time on the less painful limb ( P<0.05). Critically, severe KOA patients exhibited significantly higher peak KAM, KAM impulse, and peak MCF in the more painful limb ( P<0.05), while mild-to-moderate KOA patients showed the opposite pattern with lower peak KAM and KAM impulse in the more painful limb ( P<0.05) and a similar trend for peak MCF.
CONCLUSION
Patients with mild-to-moderate KOA effectively reduce load on the more painful limb through compensatory mechanisms in the less painful limb. Conversely, severe bilateral varus deformities in advanced KOA patients nullify compensatory capacity in the less painful limb, paradoxically increasing load on the more painful limb. This dichotomy necessitates personalized management strategies tailored to disease severity.
Humans
;
Osteoarthritis, Knee/physiopathology*
;
Range of Motion, Articular
;
Male
;
Female
;
Middle Aged
;
Biomechanical Phenomena
;
Knee Joint/physiopathology*
;
Pain Measurement
;
Severity of Illness Index
;
Aged
;
Gait/physiology*
;
Walking/physiology*
;
Case-Control Studies
;
Adult
;
Weight-Bearing
5.Exploring the mechanical and biological interplay in the periodontal ligament.
Xinyu WEN ; Fang PEI ; Ying JIN ; Zhihe ZHAO
International Journal of Oral Science 2025;17(1):23-23
The periodontal ligament (PDL) plays a crucial role in transmitting and dispersing occlusal force, acting as mechanoreceptor for muscle activity during chewing, as well as mediating orthodontic tooth movement. It transforms mechanical stimuli into biological signals, influencing alveolar bone remodeling. Recent research has delved deeper into the biological and mechanical aspects of PDL, emphasizing the importance of understanding its structure and mechanical properties comprehensively. This review focuses on the latest findings concerning both macro- and micro- structural aspects of the PDL, highlighting its mechanical characteristics and factors that influence them. Moreover, it explores the mechanotransduction mechanisms of PDL cells under mechanical forces. Structure-mechanics-mechanotransduction interplay in PDL has been integrated ultimately. By providing an up-to-date overview of our understanding on PDL at various scales, this study lays the foundation for further exploration into PDL-related biomechanics and mechanobiology.
Periodontal Ligament/cytology*
;
Humans
;
Biomechanical Phenomena
;
Mechanotransduction, Cellular/physiology*
;
Stress, Mechanical
6.Relationship between fluid shear stress in alveolar bone under orthodontic forces and bone remodeling rate.
Bin WU ; Kexin HU ; Fan YANG ; Yi LU ; Di JIANG ; Yang YI ; Bin YAN
West China Journal of Stomatology 2025;43(2):190-196
OBJECTIVES:
This study explores the differences in fluid flow within alveolar cancellous bone at various sites under orthodontic forces and elucidates the relationship between fluid shear stress and bone remodeling. These fin-dings lay the groundwork for understanding the biomechanical mechanisms of orthodontic tooth movement.
METHODS:
Stress relaxation tests were performed on human alveolar bone samples to determine material parameters by using the Prony series. An inverse model of alveolar bone was then developed for numerical simulations of fluid-structure interactions to calculate fluid flow within cancellous bone. Meanwhile, a rat model of tooth movement was established to investigate variations in bone remodeling speeds across different regions.
RESULTS:
The microstructural distribution of cancellous alveolar bone was similar in humans and rats. The bone volume fraction and trabecular thickness gradually decreased from root cervical region to root apical region, while the trabecular space gradually increased. Under the influence of orthodontic forces, fluid shear stress within cancellous bone showed spatial variability across different levels, with the highest shear stress occurring at the root apical region, ranging from 0 to 0.936 6 Pa. Additionally, the rat model of tooth movement indicated that bone remodeling occurred more rapidly at the root apical region.
CONCLUSIONS
Fluid stimulation has a remarkable effect on al-veolar bone remodeling, causing changes in the structure of alveolar bone and ultimately regulating the speed of structu-ral remodeling.
Bone Remodeling
;
Animals
;
Tooth Movement Techniques
;
Rats
;
Alveolar Process/physiology*
;
Stress, Mechanical
;
Humans
;
Biomechanical Phenomena
;
Cancellous Bone/physiology*
;
Shear Strength
7.Kinematics and plantar pressure analysis of human body during sit-to-stand in adults.
Shuo YANG ; Dan SU ; Na ZHAO ; Fang WANG ; Binwei ZHOU ; Qiang XUE
Journal of Biomedical Engineering 2024;41(6):1235-1242
Sit-to-stand is an indispensable functional activity in human daily life, which requires high muscle strength, not only to control the lower limbs, but also to ensure the stable ascension of the trunk. This paper describes in detail the trajectory and speed of the joints through the human sit-to-stand test, analyzes the change rule of the angle of the joints, the angular velocity and the position of the center of mass in the human sit-to-stand, and records in detail the change of the plantar pressure of the subjects in this process. Through the study on joint motion and plantar pressure changes in the process of sit-to-stand, this paper summarizes the kinematics of human body in this process, aiming to provide a basis through the results of this paper for the design of human sit-to-stand assistive devices, which may be used in the future to analyze the sit-to-stand state of patients with lower limb disorders, and carry out the corresponding treatment and rehabilitation training.
Humans
;
Biomechanical Phenomena
;
Foot/physiology*
;
Pressure
;
Standing Position
;
Adult
;
Posture/physiology*
;
Movement/physiology*
;
Sitting Position
8.Biomechanical study of knee joint based on coronal plane alignment of the knee.
Yunxin WANG ; Ping XU ; Ning LU ; Wenjin LI ; Shisen XU
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(12):1466-1473
OBJECTIVE:
To establish a finite element model of the knee joint based on coronal plane alignment of the knee (CPAK) typing method, and analyze the biomechanical characteristics of different types of knee joints.
METHODS:
The finite element models of the knee joint were established based on CT scan data of 6 healthy volunteers. There were 5 males and 1 female with an average age of 24.2 years (range, 23-25 years). There were 3 left knees and 3 right knees. According to the CPAK typing method, the knees were rated as types Ⅰ to Ⅵ. Under the same material properties, boundary conditions, and axial loading, biomechanical simulations were performed on the finite element model of the knee joint. Based on the Von Mises stress nephogram and displacement nephogram, the peak stresses of the meniscus, femoral cartilage, and tibial cartilage, and the displacement of the meniscus were compared among different types of knee joints.
RESULTS:
The constructed finite element model of the knee joint was verified to be effective, and the stress and displacement results were consistent with previous literature. Under the axial load of 1 000 N, the stress nephogram showed that the stress distribution of the medial and lateral meniscus and tibial cartilage of CPAK type Ⅲ knee joint was the most uneven. The peak stresses of the lateral meniscus and tibial cartilage were 9.969 6 MPa and 2.602 7 MPa, which were 173% and 165% of the medial side, respectively. The difference of peak stress between the medial and lateral femoral cartilage was the largest in type Ⅳ knee joint, and the medial was 221% of the lateral. The displacement nephogram showed that the displacement of the medial meniscus was greater than that of the lateral meniscus except for types Ⅲ and Ⅵ knee joints. The difference between medial and lateral meniscus displacement of type Ⅲ knee joint was the largest, the lateral was 170% of the medial.
CONCLUSION
In the same type of joint line obliquity (JLO), the medial and lateral stress distribution of the knee was more uniform in varus and neutral positions than in valgus position. At the same time, the distal vertex of JLO subgroup can help to reduce the uneven medial and lateral stress distribution of varus knee, but increase the uneven distribution of valgus knee.
Humans
;
Finite Element Analysis
;
Knee Joint/diagnostic imaging*
;
Female
;
Biomechanical Phenomena
;
Adult
;
Male
;
Young Adult
;
Stress, Mechanical
;
Weight-Bearing/physiology*
;
Computer Simulation
;
Tomography, X-Ray Computed/methods*
;
Cartilage, Articular/physiology*
;
Range of Motion, Articular
;
Menisci, Tibial/anatomy & histology*
;
Tibia/anatomy & histology*
;
Meniscus/diagnostic imaging*
;
Femur/diagnostic imaging*
;
Models, Biological
9.Research progress of lower limb muscle strength training in the treatment of lliotibial band syndrome.
China Journal of Orthopaedics and Traumatology 2023;36(2):189-193
Iliotibial band syndrome (ITBS), as an overused injury of the lower extremities, has developed into a common cause of lateral knee pain. At present, the treatment of ITBS includes drug therapy, muscle strength training, physical therapy, and surgical treatment. Among these methods, physical therapy, drug therapy, and surgical treatment can only alleviate the symptoms of patients. As a safe and effective treatment, lower limb muscle strength training can improve patients' muscle strength, correct abnormal gait, and reduce the recurrence rate of the disease by paying attention to the dynamic changes of patients' recovery process. At present, the pathogenesis of ITBS remains unclear, and the treatment methods are not unified. It is necessary to further study the biomechanical factors related to the lower extremities and develop more scientific and comprehensive muscle strength training methods.
Humans
;
Resistance Training
;
Running/physiology*
;
Iliotibial Band Syndrome/diagnosis*
;
Lower Extremity
;
Physical Therapy Modalities/adverse effects*
;
Knee Joint
;
Muscle Strength/physiology*
;
Muscles/injuries*
;
Biomechanical Phenomena
10.Design and validation of a novel knee biomechanical test method.
Junrui WANG ; Zhiping ZHAO ; Chengteng JIANG ; Chuang NIE ; Quanxing SHI ; Meng LIU ; Jianwen GU
Journal of Biomedical Engineering 2023;40(6):1185-1191
A novel structural dynamics test method and device were designed to test the biomechanical effects of dynamic axial loading on knee cartilage and meniscus. Firstly, the maximum acceleration signal-to-noise ratio of the experimental device was calculated by applying axial dynamic load to the experimental device under unloaded condition with different force hammers. Then the experimental samples were divided into non-specimen group (no specimen loaded), sham specimen group (loaded with polypropylene samples) and bovine knee joint specimen group (loaded with bovine knee joint samples) for testing. The test results show that the experimental device and method can provide stable axial dynamic load, and the experimental results have good repeatability. The final results confirm that the dynamic characteristics of experimental samples can be distinguished effectively by this device. The experimental method proposed in this study provides a new way to further study the biomechanical mechanism of knee joint structural response under axial dynamic load.
Animals
;
Cattle
;
Biomechanical Phenomena
;
Knee Joint/physiology*
;
Meniscus
;
Mechanical Phenomena
;
Weight-Bearing

Result Analysis
Print
Save
E-mail